Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 219, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997157

ABSTRACT

A germ-free rearing system is a crucial method for host-microbiota interactions using Nasonia as a model system. The previous rearing media in 2012 introduced toxic factors like bleach and antibiotics, required significant effort and volume of media preparation, and the rearing protocols in 2012 and 2016 often resulted in embryos, larvae, and enclosing pupae drowning, underfed, or desiccating. In this work, we optimize the germ-free rearing media that excludes the toxic factors and provide a substrate for the developing animals to have constant access to media without the risk of drowning or desiccation. The new process resulted in an increase in full maturation of larvae to adults from 33 to 65%, with no effect on the rate of growth or final adult size. This significantly improves the applicability of germ-free rearing of Nasonia and potentially other parasitoids.


Subject(s)
Diptera/growth & development , Entomology/methods , Animals , Female , Germ-Free Life , Host Microbial Interactions , Larva/growth & development , Male , Pupa/growth & development
2.
Sci Adv ; 7(19)2021 05.
Article in English | MEDLINE | ID: mdl-33952510

ABSTRACT

One of the most difficult experimental challenges today is testing the evolutionary dynamics shaping complex host-microbiome interactions. We investigated host-microbiome codiversification in response to xenobiotic-induced selection using an experimental evolution approach. To this end, we exposed the parasitoid wasp Nasonia vitripennis to sublethal concentrations of the widely used herbicide atrazine for 85 generations. Our results reveal that atrazine exposure not only mediated adaptive changes within the microbiome, which conferred host resistance to atrazine toxicity, but also exerted selective pressure on the host genome and altered host gene expression and immune response. Furthermore, microbiome transplant experiments reveal a decreased survival of adults from the control population after exposure to the evolved microbiome of the atrazine-exposed population, while no such decrease occurred in the reciprocal transplant. These results indicate that xenobiotic-induced selection mediated host-microbiome coadaptation, ultimately leading to a new host genome-microbiome equilibrium.

3.
Microbiome ; 9(1): 85, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33836829

ABSTRACT

BACKGROUND: The life cycles of many insect species include an obligatory or facultative diapause stage with arrested development and low metabolic activity as an overwintering strategy. Diapause is characterised by profound physiological changes in endocrine activity, cell proliferation and nutrient metabolism. However, little is known regarding host-microbiome interactions during diapause, despite the importance of bacterial symbionts for host nutrition and development. In this work, we investigated (i) the role of the microbiome for host nutrient allocation during diapause and (ii) the impact of larval diapause on microbiome dynamics in the parasitoid wasp Nasonia vitripennis, a model organism for host-microbiome interactions. RESULTS: Our results demonstrate that the microbiome is essential for host nutrient allocation during diapause in N. vitripennis, as axenic diapausing larvae had consistently lower glucose and glycerol levels than conventional diapausing larvae, especially when exposed to cold temperature. In turn, microbiome composition was altered in diapausing larvae, potentially due to changes in the surrounding temperature, host nutrient levels and a downregulation of host immune genes. Importantly, prolonged larval diapause had a transstadial effect on the adult microbiome, with unknown consequences for host fitness. Notably, the most dominant microbiome member, Providencia sp., was drastically reduced in adults after more than 4 months of larval diapause, while potential bacterial pathogens increased in abundance. CONCLUSION: This work investigates host-microbiome interactions during a crucial developmental stage, which challenges both the insect host and its microbial associates. The impact of diapause on the microbiome is likely due to several factors, including altered host regulatory mechanisms and changes in the host environment. Video Abstract.


Subject(s)
Diapause , Microbiota , Wasps , Animals , Cold Temperature , Larva
4.
BMC Evol Biol ; 20(1): 104, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811423

ABSTRACT

BACKGROUND: Microbiomes can have profound impacts on host biology and evolution, but to date, remain vastly understudied in spiders despite their unique and diverse predatory adaptations. This study evaluates closely related species of spiders and their host-microbe relationships in the context of phylosymbiosis, an eco-evolutionary pattern where the microbial community profile parallels the phylogeny of closely related host species. Using 16S rRNA gene amplicon sequencing, we characterized the microbiomes of five species with known phylogenetic relationships from the family Theridiidae, including multiple closely related widow spiders (L. hesperus, L. mactans, L. geometricus, S. grossa, and P. tepidariorum). RESULTS: We compared whole animal and tissue-specific microbiomes (cephalothorax, fat bodies, venom glands, silk glands, and ovary) in the five species to better understand the relationship between spiders and their microbial symbionts. This showed a strong congruence of the microbiome beta-diversity of the whole spiders, cephalothorax, venom glands, and silk glands when compared to their host phylogeny. Our results support phylosymbiosis in these species and across their specialized tissues. The ovary tissue microbial dendrograms also parallel the widow phylogeny, suggesting vertical transfer of species-specific bacterial symbionts. By cross-validating with RNA sequencing data obtained from the venom glands, silk glands and ovaries of L. hesperus, L. geometricus, S. grossa, and P. tepidariorum we confirmed that several microbial symbionts of interest are viably active in the host. CONCLUSION: Together these results provide evidence that supports the importance of host-microbe interactions and the significant role microbial communities may play in the evolution and adaptation of their hosts.


Subject(s)
Biological Evolution , Microbiota , Spiders/classification , Spiders/microbiology , Symbiosis , Animals , Female , Phylogeny , RNA, Ribosomal, 16S/genetics
5.
Cell Host Microbe ; 27(2): 213-224.e7, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32023487

ABSTRACT

The gut is a first point of contact with ingested xenobiotics, where chemicals are metabolized directly by the host or microbiota. Atrazine is a widely used pesticide, but the role of the microbiome metabolism of this xenobiotic and the impact on host responses is unclear. We exposed successive generations of the wasp Nasonia vitripennis to subtoxic levels of atrazine and observed changes in the structure and function of the gut microbiome that conveyed atrazine resistance. This microbiome-mediated resistance was maternally inherited and increased over successive generations, while also heightening the rate of host genome selection. The rare gut bacteria Serratia marcescens and Pseudomonas protegens contributed to atrazine metabolism. Both of these bacteria contain genes that are linked to atrazine degradation and were sufficient to confer resistance in experimental wasp populations. Thus, pesticide exposure causes functional, inherited changes in the microbiome that should be considered when assessing xenobiotic exposure and as potential countermeasures to toxicity.


Subject(s)
Gastrointestinal Microbiome , Pesticides/toxicity , Wasps/microbiology , Animals , Atrazine/metabolism , Atrazine/toxicity , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Directed Molecular Evolution , Drug Resistance/genetics , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Genes, Bacterial , Maternal Inheritance , Metagenomics , Pesticides/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Serratia marcescens/metabolism , Wasps/drug effects , Xenobiotics/metabolism , Xenobiotics/toxicity
6.
Article in English | MEDLINE | ID: mdl-30714029

ABSTRACT

Enterococcus faecalis is a Gram-positive, lactic acid-producing coccus which can be found as a member of the gut microbiome in many animal species and is a potential pathogen in humans. Here, we describe the genome sequence of an E. faecalis strain isolated from the gut microbiome of the hymenopteran model Nasonia vitripennis.

7.
Article in English | MEDLINE | ID: mdl-30687816

ABSTRACT

Providencia rettgeri is a common insect-associated Gram-negative bacterium. Here, we present the draft genome sequence of P. rettgeri NVIT03, the most common bacterial symbiont of the insect hymenopteran model Nasonia vitripennis. This symbiont is also part of the Sarcophaga bullata pupal microbiome that Nasonia spp. parasitize and that critically influences the development of the wasp.

8.
PLoS One ; 13(10): e0206366, 2018.
Article in English | MEDLINE | ID: mdl-30365522

ABSTRACT

OBJECTIVE: Necrotizing enterocolitis (NEC) is the most common surgical emergency in preterm infants, and pathogenesis associates with changes in the fecal microbiome. As fecal samples incompletely represent microbial communities in intestinal mucosa, we sought to determine the NEC tissue-specific microbiome and assess its contribution to pathogenesis. DESIGN: We amplified and sequenced the V1-V3 hypervariable region of the bacterial 16S rRNA gene extracted from intestinal tissue and corresponding fecal samples from 12 surgical patients with NEC and 14 surgical patients without NEC. Low quality and non-bacterial sequences were removed, and taxonomic assignment was made with the Ribosomal Database Project. Operational taxonomic units were clustered at 97%. We tested for differences between NEC and non-NEC samples in microbiome alpha- and beta-diversity and differential abundance of specific taxa between NEC and non-NEC samples. Additional analyses were performed to assess the contribution of other demographic and environmental confounding factors on the infant tissue and fecal microbiome. RESULTS: The fecal and tissue microbial communities were different. NEC was associated with a distinct microbiome, which was characterized by low diversity, higher abundances of Staphylococcus and Clostridium_sensu_stricto, and lower abundances of Actinomyces and Corynebacterium. Infant age and vancomycin exposure correlated with shifts in the tissue microbiome. CONCLUSION: The observed low diversity in NEC tissues suggests that NEC is associated with a bacterial bloom and a distinct mucosal bacterial community. The exact bacterial species that constitute the bloom varied by infant and were strongly influenced by age and exposure to vancomycin.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/surgery , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Age Factors , Anti-Bacterial Agents/pharmacology , Biodiversity , Enterocolitis, Necrotizing/drug therapy , Female , Humans , Infant , Infant, Newborn , Male , Microbiota/drug effects , Pregnancy
9.
PLoS One ; 13(5): e0197439, 2018.
Article in English | MEDLINE | ID: mdl-29771989

ABSTRACT

Bacterial DNA has been reported in the placenta and amniotic fluid by several independent groups of investigators. However, it's taxonomic overlap with fetal and maternal bacterial DNA in different sites has been poorly characterized. Here, we determined the presence of bacterial DNA in the intestines and placentas of fetal mice at gestational day 17 (n = 13). These were compared to newborn intestines (n = 15), maternal sites (mouth, n = 6; vagina, n = 6; colon, n = 7; feces, n = 8), and negative controls to rule out contamination. The V4 region of the bacterial 16S rRNA gene indicated a pattern of bacterial DNA in fetal intestine similar to placenta but with higher phylogenetic diversity than placenta or newborn intestine. Firmicutes were the most frequently assignable phylum. SourceTracker analysis suggested the placenta as the most commonly identifiable origin for fetal bacterial DNA, but also over 75% of fetal gut genera overlapped with maternal oral and vaginal taxa but not with maternal or newborn feces. These data provide evidence for the presence of bacterial DNA in the mouse fetus.


Subject(s)
Amniotic Fluid/metabolism , DNA, Bacterial/analysis , Intestinal Mucosa/metabolism , Intestines/embryology , Placenta/metabolism , Placenta/microbiology , Animals , Female , Mice , Pregnancy , RNA, Ribosomal, 16S/genetics , Vagina/metabolism , Vagina/microbiology
10.
Front Microbiol ; 8: 526, 2017.
Article in English | MEDLINE | ID: mdl-28421042

ABSTRACT

Symbiotic microbial communities augment host phenotype, including defense against pathogen carriage and infection. We sampled the microbial communities in 11 adult mosquito host species from six regions in southern Ontario, Canada over 3 years. Of the factors examined, we found that mosquito species was the largest driver of the microbiota, with remarkable phylosymbiosis between host and microbiota. Seasonal shifts of the microbiome were consistently repeated over the 3-year period, while region had little impact. Both host species and seasonal shifts in microbiota were associated with patterns of West Nile virus (WNV) in these mosquitoes. The highest prevalence of WNV, with a seasonal spike each year in August, was in the Culex pipiens/restuans complex, and high WNV prevalence followed a decrease in relative abundance of Wolbachia in this species. Indeed, mean temperature, but not precipitation, was significantly correlated with Wolbachia abundance. This suggests that at higher temperatures Wolbachia abundance is reduced leading to greater susceptibility to WNV in the subsequent generation of C. pipiens/restuans hosts. Different mosquito genera harbored significantly different bacterial communities, and presence or abundance of Wolbachia was primarily associated with these differences. We identified several operational taxonomic units (OTUs) of Wolbachia that drive overall microbial community differentiation among mosquito taxa, locations and timepoints. Distinct Wolbachia OTUs were consistently found to dominate microbiomes of Cx. pipiens/restuans, and of Coquilletidia perturbans. Seasonal fluctuations of several other microbial taxa included Bacillus cereus, Enterococcus, Methylobacterium, Asaia, Pantoea, Acinetobacter johnsonii, Pseudomonas, and Mycoplasma. This suggests that microbiota may explain some of the variation in vector competence previously attributed to local environmental processes, especially because Wolbachia is known to affect carriage of viral pathogens.

11.
BMC Evol Biol ; 17(1): 37, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28125957

ABSTRACT

BACKGROUND: Measuring the evolutionary rate of reproductive isolation is essential to understanding how new species form. Tempo calculations typically rely on fossil records, geological events, and molecular evolution analyses. The speed at which genetically-based hybrid mortality arises, or the "incompatibility clock", is estimated to be millions of years in various diploid organisms and is poorly understood in general. Owing to these extended timeframes, seldom do biologists observe the evolution of hybrid mortality in real time. RESULTS: Here we report the very recent spread and fixation of complete asymmetric F1 hybrid mortality within eight years of laboratory maintenance in the insect model Nasonia. The asymmetric interspecific hybrid mortality evolved in an isogenic stock line of N. longicornis and occurs in crosses to N. vitripennis males. The resulting diploid hybrids exhibit complete failure in dorsal closure during embryogenesis. CONCLUSION: These results comprise a unique case whereby a strong asymmetrical isolation barrier evolved in real time. The spread of this reproductive isolation barrier notably occurred in a small laboratory stock subject to recurrent bottlenecks.


Subject(s)
Hybridization, Genetic , Reproductive Isolation , Wasps/genetics , Animals , Biological Evolution , Female , Male
12.
PLoS Biol ; 15(1): e1002587, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28068336

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.2000225.].

13.
mSystems ; 1(2)2016.
Article in English | MEDLINE | ID: mdl-27822520

ABSTRACT

Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization-what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. For instance, critiquing the hologenome concept is not synonymous with critiquing coevolution, and arguing that an entity is not a primary unit of selection dismisses the fact that the hologenome concept has always embraced multilevel selection. Holobionts and hologenomes are incontrovertible, multipartite entities that result from ecological, evolutionary, and genetic processes at various levels. They are not restricted to one special process but constitute a wider vocabulary and framework for host biology in light of the microbiome.

14.
PLoS Biol ; 14(11): e2000225, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27861590

ABSTRACT

Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each group's complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host-microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animal's microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions.


Subject(s)
Host-Parasite Interactions , Microbiota , Phylogeny , Symbiosis , Animals
15.
Front Microbiol ; 7: 1478, 2016.
Article in English | MEDLINE | ID: mdl-27721807

ABSTRACT

The parasitoid wasp genus Nasonia (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis. The host-microbiota assemblage which constitutes the Nasonia holobiont (a host together with all of its associated microbes) consists of viruses, two heritable bacterial symbionts and a bacterial community dominated in abundance by a few taxa in the gut. In the wild, all four Nasonia species are systematically infected with the obligate intracellular bacterium Wolbachia and can additionally be co-infected with Arsenophonus nasoniae. These two reproductive parasites have different transmission modes and host manipulations (cytoplasmic incompatibility vs. male-killing, respectively). Pioneering studies on Wolbachia in Nasonia demonstrated that closely related Nasonia species harbor multiple and mutually incompatible Wolbachia strains, resulting in strong symbiont-mediated reproductive barriers that evolved early in the speciation process. Moreover, research on host-symbiont interactions and speciation has recently broadened from its historical focus on heritable symbionts to the entire microbial community. In this context, each Nasonia species hosts a distinguishable community of gut bacteria that experiences a temporal succession during host development and members of this bacterial community cause strong hybrid lethality during larval development. In this review, we present the Nasonia species complex as a model system to experimentally investigate questions regarding: (i) the impact of different microbes, including (but not limited to) heritable endosymbionts, on the extended phenotype of the holobiont, (ii) the establishment and regulation of a species-specific microbiota, (iii) the role of the microbiota in speciation, and (iv) the resilience and adaptability of the microbiota in wild populations subjected to different environmental pressures. We discuss the potential for easy microbiota manipulations in Nasonia as a promising experimental approach to address these fundamental aspects.

16.
Nat Commun ; 7: 11240, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27046438

ABSTRACT

Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR(-/-)) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR(-/-) mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR(-/-) mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema.


Subject(s)
Aging/immunology , Aminopyridines/pharmacology , Benzamides/pharmacology , Microbiota/immunology , Phosphodiesterase 4 Inhibitors/pharmacology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Emphysema/immunology , Receptors, Polymeric Immunoglobulin/deficiency , Aging/pathology , Airway Remodeling/immunology , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/immunology , Cyclopropanes/pharmacology , Disease Models, Animal , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity, Innate , Immunoglobulin A, Secretory/genetics , Leukocyte Elastase/genetics , Leukocyte Elastase/immunology , Lung/drug effects , Lung/immunology , Lung/microbiology , Lung/pathology , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/immunology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/genetics , Pulmonary Emphysema/microbiology , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Respiratory Mucosa/pathology
17.
Front Microbiol ; 7: 68, 2016.
Article in English | MEDLINE | ID: mdl-26870025

ABSTRACT

Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.

18.
Nat Commun ; 6: 7715, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26197299

ABSTRACT

Roux-en-Y gastric bypass (RYGB) is highly effective in reversing obesity and associated diabetes. Recent observations in humans suggest a contributing role of increased circulating bile acids in mediating such effects. Here we use a diet-induced obesity (DIO) mouse model and compare metabolic remission when bile flow is diverted through a gallbladder anastomosis to jejunum, ileum or duodenum (sham control). We find that only bile diversion to the ileum results in physiologic changes similar to RYGB, including sustained improvements in weight, glucose tolerance and hepatic steatosis despite differential effects on hepatic gene expression. Circulating free fatty acids and triglycerides decrease while bile acids increase, particularly conjugated tauro-ß-muricholic acid, an FXR antagonist. Activity of the hepatic FXR/FGF15 signalling axis is reduced and associated with altered gut microbiota. Thus bile diversion, independent of surgical rearrangement of the gastrointestinal tract, imparts significant weight loss accompanied by improved glucose and lipid homeostasis that are hallmarks of RYGB.


Subject(s)
Anastomosis, Surgical/methods , Bariatric Surgery/methods , Gallbladder/surgery , Intestine, Small/surgery , Obesity/surgery , Adaptation, Biological , Animals , Bile Acids and Salts/blood , Carrier Proteins/metabolism , Disease Models, Animal , Energy Metabolism , Fibroblast Growth Factors/metabolism , Gastrointestinal Microbiome , Liver/metabolism , Male , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Obesity/blood , Random Allocation
19.
Science ; 345(6200): 1011, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25170145

ABSTRACT

Chandler and Turelli postulate that intrinsic hybrid dysfunction underscores hybrid lethality in Nasonia. Although it is a suitable conception for examining hybrid incompatibilities, their account of the evidence is factually inaccurate and leaves out the evolutionary process for why lethality became conditional on nuclear-microbe interactions. Hybrid incompatibilities in the context of phylosymbiosis are resolved by hologenomic principles and exemplify this emerging postmodern synthesis.


Subject(s)
Bacteria/classification , Gastrointestinal Tract/microbiology , Germ-Free Life/physiology , Hymenoptera/microbiology , Hymenoptera/physiology , Symbiosis , Animals
20.
Gut Microbes ; 5(2): 192-201, 2014.
Article in English | MEDLINE | ID: mdl-24637795

ABSTRACT

Fecal sampling is widely utilized to define small intestinal tissue-level microbial communities in healthy and diseased newborns. However, this approach may lead to inaccurate assessments of disease or therapeutics in newborns because of the assumption that the taxa in the fecal microbiota are representative of the taxa present throughout the gastrointestinal tract. To assess the stratification of microbes in the newborn gut and to evaluate the probable shortcoming of fecal sampling in place of tissue sampling, we simultaneously compared intestinal mucosa and fecal microbial communities in 15 neonates undergoing intestinal resections. We report three key results. First, when the site of fecal and mucosal samples are further apart, their microbial communities are more distinct, as indicated by low mean Sørensen similarity indices for each patient's fecal and tissue microbiota. Second, two distinct niches (intestinal mucosa and fecal microbiota) are evident by principal component analyses, demonstrating the critical role of sample source in defining microbial composition. Finally, in contrast to adult studies, intestinal bacterial diversity was higher in tissue than in fecal samples. This study represents an unprecedented map of the infant microbiota from intestinal mucosa and establishes discernable biogeography throughout the neonatal gastrointestinal tract. Our results question the reliance on fecal microbiota as a proxy for the developing intestinal microbiota. Additionally, the robust intestinal tissue-level bacterial diversity we detected at these early ages may contribute to the maturation of mucosal immunity.


Subject(s)
Gastrointestinal Tract/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Humans , Infant, Newborn , Intestinal Mucosa/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...