Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-37889293

ABSTRACT

Cells store lipids in the form of triglyceride (TG) and sterol ester (SE) in lipid droplets (LDs). Distinct pools of LDs exist, but a pervasive question is how proteins localize to and convey functions to LD subsets. Here, we show that the yeast protein YDR275W/Tld1 (for TG-associated LD protein 1) localizes to a subset of TG-containing LDs and reveal it negatively regulates lipolysis. Mechanistically, Tld1 LD targeting requires TG, and it is mediated by two distinct hydrophobic regions (HRs). Molecular dynamics simulations reveal that Tld1's HRs interact with TG on LDs and adopt specific conformations on TG-rich LDs versus SE-rich LDs in yeast and human cells. Tld1-deficient yeast display no defect in LD biogenesis but exhibit elevated TG lipolysis dependent on lipase Tgl3. Remarkably, overexpression of Tld1, but not LD protein Pln1/Pet10, promotes TG accumulation without altering SE pools. Finally, we find that Tld1-deficient cells display altered LD mobilization during extended yeast starvation. We propose that Tld1 senses TG-rich LDs and regulates lipolysis on LD subpopulations.


Subject(s)
Lipid Droplets , Lipolysis , Saccharomyces cerevisiae Proteins , Humans , Lipase/metabolism , Lipid Droplets/metabolism , Lipolysis/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Triglycerides/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
bioRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-36945645

ABSTRACT

Cells store lipids in the form of triglyceride (TG) and sterol-ester (SE) in lipid droplets (LDs). Distinct pools of LDs exist, but a pervasive question is how proteins localize to and convey functions to LD subsets. Here, we show the yeast protein YDR275W/Tld1 (for TG-associated LD protein 1) localizes to a subset of TG-containing LDs, and reveal it negatively regulates lipolysis. Mechanistically, Tld1 LD targeting requires TG, and is mediated by two distinct hydrophobic regions (HRs). Molecular dynamics simulations reveal Tld1 HRs interact with TG on LDs and adopt specific conformations on TG-rich LDs versus SE-rich LDs in yeast and human cells. Tld1-deficient yeast display no defect in LD biogenesis, but exhibit elevated TG lipolysis dependent on lipase Tgl3. Remarkably, over-expression of Tld1, but not LD protein Pln1/Pet10, promotes TG accumulation without altering SE pools. Finally, we find Tld1-deficient cells display altered LD mobilization during extended yeast starvation. We propose Tld1 senses TG-rich LDs and regulates lipolysis on LD subpopulations.

3.
Arch Biochem Biophys ; 695: 108626, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33049291

ABSTRACT

Glycogen branching enzyme (GBE1) introduces branching points in the glycogen molecule during its synthesis. Pathogenic GBE1 gene mutations lead to glycogen storage disease type IV (GSD IV), which is characterized by excessive intracellular accumulation of abnormal, poorly branched glycogen in affected tissues and organs, mostly in the liver. Using heterozygous Gbe1 knock-out mice (Gbe1+/-), we analyzed the effects of moderate GBE1 deficiency on oxidative stress in the liver. The livers of aged Gbe1+/- mice (22 months old) had decreased GBE1 protein levels, which caused a mild decrease in the degree of glycogen branching, but did not affect the tissue glycogen content. GBE1 deficiency was accompanied by increased protein carbonylation and elevated oxidation of the glutathione pool, indicating the existence of oxidative stress. Furthermore, we have observed increased levels of glutathione peroxidase and decreased activity of respiratory complex I in Gbe1+/- livers. Our data indicate that even mild changes in the degree of glycogen branching, which did not lead to excessive glycogen accumulation, may have broader effects on cellular bioenergetics and redox homeostasis. In young animals cellular homeostatic mechanisms are able to counteract those changes, while in aged tissues the changes may lead to increased oxidative stress.


Subject(s)
Aging/metabolism , Glycogen Debranching Enzyme System/deficiency , Glycogen Storage Disease Type IV/metabolism , Liver/enzymology , Oxidative Stress , Aging/genetics , Aging/pathology , Animals , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Glycogen/genetics , Glycogen/metabolism , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/pathology , Liver/pathology , Mice , Mice, Knockout , Protein Carbonylation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...