Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 39(6): e103159, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32080885

ABSTRACT

Transcriptionally inactive genes are often positioned at the nuclear lamina (NL), as part of large lamina-associated domains (LADs). Activation of such genes is often accompanied by repositioning toward the nuclear interior. How this process works and how it impacts flanking chromosomal regions are poorly understood. We addressed these questions by systematic activation or inactivation of individual genes, followed by detailed genome-wide analysis of NL interactions, replication timing, and transcription patterns. Gene activation inside LADs typically causes NL detachment of the entire transcription unit, but rarely more than 50-100 kb of flanking DNA, even when multiple neighboring genes are activated. The degree of detachment depends on the expression level and the length of the activated gene. Loss of NL interactions coincides with a switch from late to early replication timing, but the latter can involve longer stretches of DNA. Inactivation of active genes can lead to increased NL contacts. These extensive datasets are a resource for the analysis of LAD rewiring by transcription and reveal a remarkable flexibility of interphase chromosomes.


Subject(s)
Chromosomes/genetics , DNA Replication/genetics , Genome/genetics , Nuclear Lamina/genetics , Transcriptional Activation/genetics , Animals , Cell Line , Cell Nucleus/genetics , Chromatin/genetics , Embryonic Stem Cells , Female , Humans , Interphase , Mice , Neuropilin-1/genetics , Promoter Regions, Genetic/genetics , SOXD Transcription Factors/genetics , Transgenes
2.
Genes Cells ; 25(1): 22-32, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31680384

ABSTRACT

DNA methylation controls gene expression, and once established, DNA methylation patterns are faithfully copied during DNA replication by the maintenance DNA methyltransferase Dnmt1. In vivo, Dnmt1 interacts with Uhrf1, which recognizes hemimethylated CpGs. Recently, we reported that Uhrf1-catalyzed K18- and K23-ubiquitinated histone H3 binds to the N-terminal region (the replication focus targeting sequence, RFTS) of Dnmt1 to stimulate its methyltransferase activity. However, it is not yet fully understood how ubiquitinated histone H3 stimulates Dnmt1 activity. Here, we show that monoubiquitinated histone H3 stimulates Dnmt1 activity toward DNA with multiple hemimethylated CpGs but not toward DNA with only a single hemimethylated CpG, suggesting an influence of ubiquitination on the processivity of Dnmt1. The Dnmt1 activity stimulated by monoubiquitinated histone H3 was additively enhanced by the Uhrf1 SRA domain, which also binds to RFTS. Thus, Dnmt1 activity is regulated by catalysis (ubiquitination)-dependent and -independent functions of Uhrf1.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Histones/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Replication , Histones/physiology , Humans , Protein Binding , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
Cell ; 177(4): 852-864.e14, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982597

ABSTRACT

It is largely unclear whether genes that are naturally embedded in lamina-associated domains (LADs) are inactive due to their chromatin environment or whether LADs are merely secondary to the lack of transcription. We show that hundreds of human promoters become active when moved from their native LAD position to a neutral context in the same cells, indicating that LADs form a repressive environment. Another set of promoters inside LADs is able to "escape" repression, although their transcription elongation is attenuated. By inserting reporters into thousands of genomic locations, we demonstrate that escaper promoters are intrinsically less sensitive to LAD repression. This is not simply explained by promoter strength but by the interplay between promoter sequence and local chromatin features that vary strongly across LADs. Enhancers also differ in their sensitivity to LAD chromatin. This work provides a general framework for the systematic understanding of gene regulation by repressive chromatin.


Subject(s)
Gene Expression Regulation/genetics , Nuclear Lamina/genetics , Promoter Regions, Genetic/genetics , Chromatin/genetics , Chromatin/metabolism , Gene Expression/genetics , Genome, Human/genetics , Genomics , Humans , K562 Cells
4.
Life Sci Alliance ; 1(1): e201800024, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30456345

ABSTRACT

The chromatin remodeling complexes chromatin accessibility complex and ATP-utilizing chromatin assembly and remodeling factor (ACF) combine the ATPase ISWI with the signature subunit ACF1. These enzymes catalyze well-studied nucleosome sliding reactions in vitro, but how their actions affect physiological gene expression remains unclear. Here, we explored the influence of Drosophila melanogaster chromatin accessibility complex/ACF on transcription by using complementary gain- and loss-of-function approaches. Targeting ACF1 to multiple reporter genes inserted at many different genomic locations revealed a context-dependent inactivation of poorly transcribed reporters in repressive chromatin. Accordingly, single-embryo transcriptome analysis of an Acf knock-out allele showed that only lowly expressed genes are derepressed in the absence of ACF1. Finally, the nucleosome arrays in Acf-deficient chromatin show loss of physiological regularity, particularly in transcriptionally inactive domains. Taken together, our results highlight that ACF1-containing remodeling factors contribute to the establishment of an inactive ground state of the genome through chromatin organization.

5.
FEBS J ; 284(20): 3455-3469, 2017 10.
Article in English | MEDLINE | ID: mdl-28834260

ABSTRACT

DNA methylation in promoter regions represses gene expression and is copied over mitotic divisions by Dnmt1. Dnmt1 activity is regulated by its replication foci targeting sequence (RFTS) domain which masks the catalytic pocket. It has been shown that Dnmt1 activity on unmethylated DNA is inhibited in nucleosome cores. In the present study, we aimed to assess the effect of nuclesome formation on maintenance methylation at single CpG resolution. We show that Dnmt1 fully methylates naked linker DNA in dinucleosomes, whereas maintenance methylation was repressed at all CpG sites in nucleosome core particles. Deletion of RFTS partly released obstruction of Dnmt1 activity in core particles. Histone H3 tail peptides inhibited Dnmt1 in an RFTS-dependent manner and repression was modulated by acetylation or methylation. We propose a novel function of RFTS to regulate Dnmt1 activity in nucleosomes.


Subject(s)
Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Replication , Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Protein Processing, Post-Translational , Acetylation , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Humans , Sequence Deletion
6.
Article in English | MEDLINE | ID: mdl-27777628

ABSTRACT

BACKGROUND: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy based on barcoded randomly integrated reporters with Gal4-mediated tethering. We applied the assay to Drosophila heterochromatin protein 1a (HP1a), which is mostly known as a repressive protein but has also been linked to transcriptional activation. RESULTS: Recruitment to over 1000 genomic locations revealed that HP1a is a potent repressor able to silence even highly expressing reporter genes. However, the local chromatin context can modulate HP1a function. In pericentromeric regions, HP1a-induced repression was enhanced by twofold. In regions marked by a H3K36me3-rich chromatin signature, HP1a-dependent silencing was significantly decreased. We found no evidence for an activating function of HP1a in our experimental system. Furthermore, we did not observe stable transmission of repression over mitotic divisions after loss of targeted HP1a. CONCLUSIONS: The multiplexed tethered reporter assay should be applicable to a large number of chromatin proteins and will be a useful tool to dissect combinatorial regulatory interactions in chromatin.


Subject(s)
Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Drosophila Proteins/genetics , Animals , Cell Line , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Silencing , Histones/metabolism , Plasmids/genetics , Plasmids/metabolism , Transcription Elongation, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection
7.
Cognition ; 93(3): 167-98, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15178376

ABSTRACT

The present research examined alternative accounts of prior violation-of-expectation (VOE) reports that young infants can represent and reason about hidden objects. According to these accounts, young infants' apparent success in these VOE tasks reflects only novelty and familiarity preferences induced by the habituation or familiarization trials in the tasks. In two experiments, 4-month-old infants were tested in VOE tasks with test trials only. The infants still gave evidence that they could represent and reason about hidden objects: they were surprised, as indicated by greater attention, when a wide object became fully hidden behind a narrow occluder (Experiment 1) or inside a narrow container (Experiment 2). These and control results demonstrate that young infants can succeed at VOE tasks involving hidden objects even when given no habituation or familiarization trials. The present research thus provides additional support for the conclusion that young infants possess expectations about hidden objects. Methodological issues concerning the use of habituation or familiarization trials in VOE tasks are also discussed.


Subject(s)
Decision Making , Visual Perception , Female , Fixation, Ocular , Habituation, Psychophysiologic , Humans , Infant , Male , Time Factors
8.
Cognition ; 88(3): B23-32, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12804819

ABSTRACT

The present research examined two alternative interpretations of violation-of-expectation findings that young infants can represent hidden objects. One interpretation is that, when watching an event in which an object becomes hidden behind another object, infants form a prediction about the event's outcome while both objects are still visible, and then check whether this prediction was accurate. The other interpretation is that infants' initial representations of hidden objects are weak and short-lived and as such sufficient for success in most violation-of-expectation tasks (as objects are typically hidden for only a few seconds at a time), but not more challenging tasks. Five-month-old infants succeeded in reasoning about the interaction of a visible and a hidden object even though (1) the two objects were never simultaneously visible, and (2) a 3- or 4-min delay preceded the test trials. These results provide evidence for robust representations of hidden objects in young infants.


Subject(s)
Child Development , Cognition , Memory , Female , Humans , Infant , Male , Task Performance and Analysis , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...