Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Chemother Pharmacol ; 65(4): 625-39, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19784839

ABSTRACT

PURPOSE: Comparative pharmacokinetic (PK) analysis of the mTOR inhibitor RAD001 (everolimus) in rats and mice. METHODS: Blood cell partitioning, plasma protein binding and PK parameters of RAD001 in blood and tissues (including brain) of both mice and rats were determined. PK modeling predicted plasma/blood and tumor levels from a variety of regimens and these were compared with the known human PK profile. DCE-MRI was used to compare tumor vascularity between mice and rats. Estimation of IC50 values in vitro and ED50 values in vivo were used to provide an indication of anti-tumor activity. RESULTS: The PK properties of RAD001 differed between mice and rats, including erythrocyte partitioning, plasma protein binding, plasma/blood t(1/2), oral bioavailability, volume of distribution, tissue/tumor penetration and elimination. Modeling of tumor and blood/plasma PK suggested that in mice, multiple daily administrations result in a 2-fold increase in tumor levels of RAD001 at steady state, whereas in rats, a 7.9-fold increase would occur. Weekly high-dose regimens were predicted not to facilitate tumor accumulation in either species. Total tumor levels of RAD001 were four- to eight-fold greater in rats than in mice. Rat tumors had a >2-fold greater plasma content and permeability compared to mouse tumors, which could contribute to differences in tumor drug uptake. Maximal antitumor effects (T/C of 0.04-0.35) were observed in both species after daily administration with similar C(max) and AUC values of unbound (free) RAD001. These free levels of RAD001 are exceeded in serum from cancer patients receiving clinically beneficial daily regimens. In rodents, brain penetration of RAD001 was poor, but was dose-dependent and showed over-proportional uptake in rats with a longer t(1/2) compared to the systemic circulation. CONCLUSIONS: The PK of RAD001 differed between mice and rats, with rats having a PK profile closer to that of humans. High intermittent doses of RAD001 may be more appropriate for treatment of brain tumors.


Subject(s)
Immunosuppressive Agents/pharmacokinetics , Neoplasms, Experimental/metabolism , Sirolimus/analogs & derivatives , Animals , Area Under Curve , Cell Line, Tumor , Everolimus , Feces/chemistry , Female , Humans , Immunosuppressive Agents/blood , Immunosuppressive Agents/urine , Male , Metabolic Clearance Rate , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/blood , Neoplasms, Experimental/urine , Rats , Rats, Inbred BN , Rats, Inbred Lew , Sirolimus/pharmacokinetics , Species Specificity , Time Factors , Tissue Distribution , Transplantation, Heterologous
2.
Br J Cancer ; 88(10): 1622-30, 2003 May 19.
Article in English | MEDLINE | ID: mdl-12771932

ABSTRACT

We have generated fusion proteins between vascular endothelial growth factor (VEGF) and the bacterial enzyme carboxypeptidase G2 (CPG2) that can activate the prodrug 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid (CMDA). Three asparagine residues of CPG2 were mutated to glutamine (CPG2(Q)3) to prevent glycosylation during secretion, and truncations of VEGF(165) were fused to either the C- or N-terminal of CPG2. The K(m) of the fusion proteins (37.5 microM) was similar to that of secreted CPG2(Q)3 (29.5 microM) but greater than that of wild-type CPG2 (8 microM). The affinity of the fusion proteins for VEGF receptor-2 (VEGFR2) (K(d)=0.5-1.1 nM) was similar to that of [(125)I]VEGF (K(d)=0.5 nM) (ELISA) or slightly higher (K(d)=1.3-9.6 nM) (competitive RIA). One protein, VEGF(115)-CPG2(Q)3-H(6), possessed 140% of the enzymic activity of secreted CPG2(Q)3, and had a faster half-maximal binding time for VEGFR2 (77 s), than the other candidates (330 s). In vitro, VEGF(115)-CPG2(Q)3-H(6) targeted CMDA cytotoxicity only towards VEGFR-expressing cells. The plasma half-life of VEGF(115)-CPG2(Q)3-H(6) in vivo was 3 h, comparable to equivalent values observed in ADEPT. We conclude that enzyme prodrug therapy using VEGF as a targeting moiety represents a promising novel antitumour therapy, with VEGF(115)-CPG2(Q)3-H(6) being a lead candidate.


Subject(s)
Endothelial Growth Factors/pharmacology , Glutamates/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Lymphokines/pharmacology , Nitrogen Mustard Compounds/pharmacology , Prodrugs/pharmacology , Vascular Endothelial Growth Factor Receptor-2/genetics , gamma-Glutamyl Hydrolase/pharmacology , Adenocarcinoma/pathology , Endothelial Growth Factors/genetics , Endothelium/cytology , Female , Glutamine , Humans , Intercellular Signaling Peptides and Proteins/genetics , Lymphokines/genetics , Mutagenesis, Site-Directed , Neovascularization, Pathologic , Ovarian Neoplasms/pathology , Plasmids , Point Mutation , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2/drug effects , Vascular Endothelial Growth Factors , gamma-Glutamyl Hydrolase/genetics
3.
J Natl Cancer Inst ; 92(20): 1641-50, 2000 Oct 18.
Article in English | MEDLINE | ID: mdl-11036109

ABSTRACT

BACKGROUND: Chronic myeloid leukemia is caused by a chromosomal translocation that results in an oncogenic fusion protein, Bcr-Abl. Bcr-Abl is a tyrosine kinase whose activity is inhibited by the antineoplastic drug STI571. This drug can cure mice given an injection of human leukemic cells, but treatment ultimately fails in animals that have large tumors when treatment is initiated. We created a mouse model to explore the mechanism of resistance in vivo. METHODS Nude mice were injected with KU812 Bcr-Abl(+) human leukemic cells. After 1 day (no evident tumors), 8 days, or 15 days (tumors >1 g), mice were treated with STI571 (160 mg/kg every 8 hours). Cells recovered from relapsing animals were used for in vitro experiments. Statistical tests were two-sided. RESULTS: Tumors regressed initially in all STI571-treated mice, but all mice treated 15 days after injection of tumor cells eventually relapsed. Relapsed animals did not respond to further STI571 treatment, and their Bcr-Abl kinase activity in vivo was not inhibited by STI571, despite high plasma concentrations of the drug. However, tumor cells from resistant animals were sensitive to STI571 in vitro, suggesting that a molecule in the plasma of relapsed animals may inactivate the drug. The plasma protein alpha1 acid glycoprotein (AGP) bound STI571 at physiologic concentrations in vitro and blocked the ability of STI571 to inhibit Bcr-Abl kinase activity in a dose-dependent manner. Plasma AGP concentrations were strongly associated with tumor load. Erythromycin competed with STI571 for AGP binding. When animals bearing large tumors were treated with STI571 alone or with a combination of STI571 and erythromycin, greater tumor reductions and better long-term tumor-free survival (10 of 12 versus one of 13 at day 180; P:<.001) were observed after the combination treatment. CONCLUSION: AGP in the plasma of relapsed animals binds to STI571, preventing this compound from inhibiting the Bcr/Abl tyrosine kinase. Molecules such as erythromycin that compete with STI571 for binding to AGP may enhance the therapeutic potential of this drug.


Subject(s)
Antineoplastic Agents/pharmacology , Fusion Proteins, bcr-abl/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Orosomucoid/drug effects , Orosomucoid/metabolism , Piperazines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Benzamides , Blotting, Western , Drug Resistance, Neoplasm , Drug Synergism , Drug Therapy, Combination , Enzyme Inhibitors/pharmacology , Erythromycin/pharmacology , Female , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Mice , Mice, Nude , Phosphorylation/drug effects , Time Factors , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...