Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108947

ABSTRACT

Fungal secretomes are known to contain a multitude of components involved in nutrition, cell growth or biotic interactions. Recently, extra-cellular vesicles have been identified in a few fungal species. Here, we used a multidisciplinary approach to identify and characterize extracellular vesicles produced by the plant necrotroph Botrytis cinerea. Transmission electron microscopy of infectious hyphae and hyphae grown in vitro revealed extracellular vesicles of various sizes and densities. Electron tomography showed the co-existence of ovoid and tubular vesicles and pointed to their release via the fusion of multi-vesicular bodies with the cell plasma membrane. The isolation of these vesicles and exploration of their protein content using mass spectrometry led to the identification of soluble and membrane proteins involved in transport, metabolism, cell wall synthesis and remodeling, proteostasis, oxidoreduction and traffic. Confocal microscopy highlighted the capacity of fluorescently labeled vesicles to target cells of B. cinerea, cells of the fungus Fusarium graminearum, and onion epidermal cells but not yeast cells. In addition, a specific positive effect of these vesicles on the growth of B. cinerea was quantified. Altogether, this study broadens our view on the secretion capacity of B. cinerea and its cell-to-cell communication.

2.
J Fungi (Basel) ; 8(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36135623

ABSTRACT

The fungal cell wall occupies a central place in the interaction between fungi and their environment. This study focuses on the role of the putative polysaccharide synthase Cps1 in the physiology, development and virulence of the grey mold-causing agent Botrytis cinerea. Deletion of the Bccps1 gene does not affect the germination of the conidia (asexual spores) or the early mycelial development, but it perturbs hyphal expansion after 24 h, revealing a two-phase hyphal development that has not been reported so far. It causes a severe reduction of mycelial growth in a solid medium and modifies hyphal aggregation into pellets in liquid cultures. It strongly impairs plant penetration, plant colonization and the formation of sclerotia (survival structures). Loss of the BcCps1 protein associates with a decrease in glucans and glycoproteins in the fungus cell wall and the up-accumulation of 132 proteins in the mutant's exoproteome, among which are fungal cell wall enzymes. This is accompanied by an increased fragility of the mutant mycelium, an increased sensitivity to some environmental stresses and a reduced adhesion to plant surface. Taken together, the results support a significant role of Cps1 in the cell wall biology of B. cinerea.

3.
Microorganisms ; 10(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35208900

ABSTRACT

The Snf1 kinase of the glucose signaling pathway controls the response to nutritional and environmental stresses. In phytopathogenic fungi, Snf1 acts as a global activator of plant cell wall degrading enzymes that are major virulence factors for plant colonization. To characterize its role in the virulence of the necrotrophic fungus Botrytis cinerea, two independent deletion mutants of the Bcsnf1 gene were obtained and analyzed. Virulence of the Δsnf1 mutants was reduced by 59% on a host with acidic pH (apple fruit) and up to 89% on hosts with neutral pH (cucumber cotyledon and French bean leaf). In vitro, Δsnf1 mutants grew slower than the wild type strain at both pH 5 and 7, with a reduction of 20-80% in simple sugars, polysaccharides, and lipidic carbon sources, and these defects were amplified at pH 7. A two-fold reduction in secretion of xylanase activities was observed consequently to the Bcsnf1 gene deletion. Moreover, Δsnf1 mutants were altered in their ability to control ambient pH. Finally, Δsnf1 mutants were impaired in asexual sporulation and did not produce macroconidia. These results confirm the importance of BcSnf1 in pathogenicity, nutrition, and conidiation, and suggest a role in pH regulation for this global regulator in filamentous fungi.

4.
Front Plant Sci ; 12: 668937, 2021.
Article in English | MEDLINE | ID: mdl-34220891

ABSTRACT

Fungi are the most prevalent plant pathogens, causing annually important damages. To infect and colonize their hosts, they secrete effectors including hydrolytic enzymes able to kill and macerate plant tissues. These secreted proteins are transported from the Endoplasmic Reticulum and the Golgi apparatus to the extracellular space through intracellular vesicles. In pathogenic fungi, intracellular vesicles were described but their biogenesis and their role in virulence remain unclear. In this study, we report the essential role of clathrin heavy chain (CHC) in the pathogenicity of Botrytis cinerea, the agent of gray mold disease. To investigate the importance of this protein involved in coat vesicles formation in eukaryotic cells, a T-DNA insertional mutant reduced in the expression of the CHC-encoding gene, and a mutant expressing a dominant-negative form of CHC were studied. Both mutants were strongly affected in pathogenicity. Characterization of the mutants revealed altered infection cushions and an important defect in protein secretion. This study demonstrates the essential role of clathrin in the infectious process of a plant pathogenic fungus and more particularly its role in virulence factors delivery.

5.
Environ Microbiol ; 23(4): 2293-2314, 2021 04.
Article in English | MEDLINE | ID: mdl-33538395

ABSTRACT

The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.


Subject(s)
Botrytis , Proteomics , Biomass , Botrytis/genetics , Fungal Proteins/genetics , Plant Diseases , Plants
6.
Front Microbiol ; 10: 2829, 2019.
Article in English | MEDLINE | ID: mdl-31866989

ABSTRACT

The gray mold fungus Botrytis cinerea is a necrotrophic pathogen able to infect hundreds of host plants, including high-value crops such as grapevine, strawberry and tomato. In order to decipher its infectious strategy, a library of 2,144 mutants was generated by random insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation (ATMT). Twelve mutants exhibiting total loss of virulence toward different host plants were chosen for detailed analyses. Their molecular characterization revealed a single T-DNA insertion in different loci. Using a proteomics approach, the secretome of four of these strains was compared to that of the parental strain and a common profile of reduced lytic enzymes was recorded. Significant variations in this profile, notably deficiencies in the secretion of proteases and hemicellulases, were observed and validated by biochemical tests. They were also a hallmark of the remaining eight non-pathogenic strains, suggesting the importance of these secreted proteins in the infection process. In the twelve non-pathogenic mutants, the differentiation of infection cushions was also impaired, suggesting a link between the penetration structures and the secretion of proteins involved in the virulence of the pathogen.

7.
Environ Microbiol Rep ; 10(5): 555-568, 2018 10.
Article in English | MEDLINE | ID: mdl-30066486

ABSTRACT

The phytopathogenic fungus Botrytis cinerea is able to infect a wide variety of plants and plant tissues with differing chemical compositions. During its interaction with the host, this pathogen modulates its ambient pH by secreting acids or ammonia. In this work, we examined the Pal/Pac pathway, the fungal ambient pH-responsive signalling circuit, and investigated the role of the PacC transcription factor. Characterization of the BcpacC deletion mutant revealed an alteration of both fungal growth and virulence depending on the pH of the culture medium or of the host tissue. The pathogenicity of the mutant was altered on plants exhibiting a neutral pH and not on plants with acidic tissues. The capacity of the mutant to acidify its environment and, more particularly, to produce oxalic acid was affected, as was production of reactive oxygen species. Finally, proteomic profiling of the mutant secretome revealed significant changes in plant cell wall polysaccharides proteins and lipid degradation and oxidoreduction, highlighting the importance of BcPacC in the necrotrophic lifestyle of B. cinerea.


Subject(s)
Botrytis/physiology , Botrytis/pathogenicity , Fungal Proteins/metabolism , Plant Diseases/microbiology , Plants/microbiology , Virulence Factors/metabolism , Virulence/genetics , Botrytis/growth & development , Botrytis/metabolism , Cell Wall/metabolism , Fungal Proteins/genetics , Gene Deletion , Gene Expression Regulation, Fungal , Host Specificity , Hydrogen-Ion Concentration , Mycelium/growth & development , Oxalic Acid/metabolism , Oxidative Stress , Proteomics , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Virulence Factors/genetics
8.
Mol Plant Microbe Interact ; 28(11): 1167-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26267356

ABSTRACT

Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.


Subject(s)
Botrytis/genetics , Disease Resistance/genetics , Fruit/genetics , Plant Diseases/genetics , Vitis/genetics , Botrytis/pathogenicity , Cell Wall/genetics , Cell Wall/metabolism , Cell Wall/microbiology , Cyclopentanes/metabolism , Fruit/growth & development , Fruit/microbiology , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Gene Ontology , Host-Pathogen Interactions/genetics , Oligonucleotide Array Sequence Analysis , Oxylipins/metabolism , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Resveratrol , Reverse Transcriptase Polymerase Chain Reaction , Salicylates/metabolism , Sesquiterpenes/metabolism , Stilbenes/metabolism , Virulence/genetics , Vitis/growth & development , Vitis/microbiology , Phytoalexins
9.
PLoS One ; 8(7): e69236, 2013.
Article in English | MEDLINE | ID: mdl-23874922

ABSTRACT

Fungi are known to adapt to pH partly via specific activation of the Pal signaling pathway and subsequent gene regulation through the transcription factor PacC. The role of PacC in pathogenic fungi has been explored in few species, and each time its partaking in virulence has been found. We studied the impact of pH and the role of PacC in the biology of the rice pathogen Magnaporthe oryzae. Conidia formation and germination were affected by pH whereas fungal growth and appressorium formation were not. Growth in vitro and in planta was characterized by alkalinization and ammonia accumulation in the surrounding medium. Expression of the MoPACC gene increased when the fungus was placed under alkaline conditions. Except for MoPALF, expression of the MoPAL genes encoding the pH-signaling components was not influenced by pH. Deletion of PACC caused a progressive loss in growth rate from pH 5 to pH 8, a loss in conidia production at pH 8 in vitro, a loss in regulation of the MoPALF gene, a decreased production of secreted lytic enzymes and a partial loss in virulence towards barley and rice. PacC therefore plays a significant role in M. oryzae's biology, and pH is revealed as one component at work during interaction between the fungus and its host plants.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/metabolism , Magnaporthe/pathogenicity , Oryza/microbiology , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Gene Expression Regulation, Fungal/physiology , Hydrogen-Ion Concentration , Plant Diseases/microbiology
10.
PLoS One ; 7(10): e48134, 2012.
Article in English | MEDLINE | ID: mdl-23133556

ABSTRACT

Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.


Subject(s)
Botrytis/genetics , Gene Expression Regulation, Fungal , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/physiology , Transcription Factors/genetics , Transcription Factors/physiology , DNA Primers/genetics , Expressed Sequence Tags , Genes, Fungal , Genome, Fungal , Models, Genetic , Mutation , Phenotype , Plant Diseases/microbiology , Transcription Factors/metabolism , Virulence
11.
Evolution ; 66(6): 1942-52, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22671558

ABSTRACT

Populations that have suffered from genetic erosion are expected to exhibit reduced average trait values or decreased variation in adaptive traits when experiencing periodic or emergent stressors such as infectious disease. Genetic erosion may consequentially modify the ability of a potential host population to cope with infectious disease emergence. We experimentally investigate this relationship between genetic variability and host response to exposure to an infectious agent both in terms of susceptibility to infection and indirect parasite-mediated responses that also impact fitness. We hypothesized that the deleterious consequences of exposure to the pathogen (Batrachochytrium dendrobatidis) would be more severe for tadpoles descended from European treefrog (Hyla arborea) populations lacking genetic variability. Although all exposed tadpoles lacked detectable infection, we detected this relationship for some indirect host responses, predominantly in genetically depleted animals, as well as an interaction between genetic variability and pathogen dose on life span during the postmetamorphic period. Lack of infection and a decreased mass and postmetamorphic life span in low genetic diversity tadpoles lead us to conclude that genetic erosion, while not affecting the ability to mount effective resistance strategies, also erodes the capacity to invest in resistance, increased tadpole growth rate, and metamorphosis relatively simultaneously.


Subject(s)
Chytridiomycota/pathogenicity , Host-Pathogen Interactions , Ranidae/genetics , Animals , Ranidae/microbiology
12.
Microbiology (Reading) ; 155(Pt 6): 2097-2105, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19359322

ABSTRACT

During pathogenesis, the ascomycete Botrytis cinerea secretes a range of cell-wall-degrading enzymes such as polygalacturonases, glucanases and proteases. We report the identification of a new member of the G1 family of proteases, BcACP1, which is secreted by B. cinerea during infection. The production of BcACP1 correlates with the acidification of the plant tissue, and transcriptional analysis of the Bcacp1 gene showed that it is only expressed under acidic growth conditions. Using a transcriptional reporter system, we showed that pH regulation of Bcacp1 is not mediated by the canonical PacC transcription factor binding site. Like other G1 proteases, BcACP1 is produced as a pro-enzyme. Trapping of the zymogen form allowed investigation of its maturation process. Evidence is presented for an autocatalytic proteolysis of the enzyme that is triggered by acidic pH. Environmental pH therefore controls Bcacp1 production at both the transcriptional and post-translational level.


Subject(s)
Botrytis/enzymology , Botrytis/pathogenicity , Endopeptidases/metabolism , Plant Diseases/microbiology , Protein Processing, Post-Translational , Transcription, Genetic , Amino Acid Sequence , Botrytis/genetics , DNA, Fungal/analysis , Endopeptidases/genetics , Enzyme Activation/drug effects , Gene Expression Regulation, Fungal , Genes, Fungal , Hydrogen-Ion Concentration , Malus/microbiology , Molecular Sequence Data , Pepstatins/pharmacology , Protease Inhibitors/pharmacology , Virulence
13.
Microbiology (Reading) ; 154(Pt 5): 1464-1473, 2008 May.
Article in English | MEDLINE | ID: mdl-18451055

ABSTRACT

Sulphur and nitrogen catabolic repressions are regulations that have long been recognized in fungi, but whose molecular bases remain largely elusive. This paper shows that catabolic repression of a protease-encoding gene correlates with the modulation of a phosphatidylethanolamine (PE)-specific phospholipase D (PLD) activity in the pathogenic fungus Botrytis cinerea. Our results first demonstrate that the ACP1 gene is subject to sulphur catabolic repression, with sulphate and cysteine inhibiting its expression. Sulphate and cysteine also cause a decrease of the total cellular PLD activity and, reciprocally, the two PLD inhibitors AEBSF [4-(2-aminoethyl)benzenesulphonyl fluoride] and curcumin negatively affect ACP1 expression in vivo. Cysteine moreover inhibits the PE-specific PLD activity in cell extracts. ACP1 is regulated by nitrogen, but here we show that this regulation does not rely on the proximal AREA binding site in its promoter, and that glutamine does not play a particular role in the process. A decrease in the total cellular PLD activity is also observed when the cells are fed ammonia, but this effect is smaller than that produced by sulphur. RNA-interference experiments finally suggest that the enzyme responsible for the PE-specific PLD activity is encoded by a gene that does not belong to the known HKD gene family of PLDs.


Subject(s)
Botrytis/enzymology , Nitrogen/metabolism , Peptide Hydrolases/biosynthesis , Phospholipase D/metabolism , Sulfur/metabolism , Ammonia/metabolism , Botrytis/metabolism , Curcumin/pharmacology , Cysteine/metabolism , Enzyme Inhibitors/pharmacology , Gene Silencing , Glutamine/metabolism , Phosphatidylethanolamines/metabolism , RNA Interference , Sulfates/metabolism , Sulfones/pharmacology
14.
Fungal Genet Biol ; 45(1): 68-75, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17716934

ABSTRACT

The ascomycete Magnaporthe grisea is a model species for the study of plant fungal interactions. As in many filamentous fungi, targeted gene replacement occurs at low frequency in M. grisea (average 7%). mus52/KU80 is a gene essential for non-homologous end joining (NHEJ) of DNA double-strand breaks. Its deletion increases the frequency of targeted gene replacement in fungi [Ninomiya, Y., Suzuki, K., Ishii, C., Inoue, H., 2004. Highly efficient gene replacements in Neurospora strains deficient for non-homologous end joining. Proc. Natl. Acad. Sci. USA 101(33), 12248-53]. M. grisea KU80 deletion mutants were constructed and displayed wild-type phenotypes regarding pathogenicity, growth, sporulation and mating. MgADE4 targeted gene replacement frequency was increased in Deltaku80 mutants (80% vs 5%) and high frequencies (>80%) were observed at seven other loci. However, the deletion of MgKU80 did not increase the frequency of ACE1 replacement indicating that this locus has an intrinsic reduced ability for gene replacement. These results open the way to large-scale reverse genetics experiments in M. grisea facilitating the study of the infection process.


Subject(s)
DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Gene Targeting/methods , Genes, Fungal , Magnaporthe/genetics , Gene Silencing , Magnaporthe/growth & development , Magnaporthe/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Recombination, Genetic , Virulence
15.
New Phytol ; 170(3): 537-50, 2006.
Article in English | MEDLINE | ID: mdl-16626475

ABSTRACT

Botrytis cinerea is a necrotrophic pathogen that attacks more than 200 plant species. Here, the nonpathogenic mutant A336, obtained via insertional mutagenesis, was characterized. Mutant A336 was nonpathogenic on leaves and fruits, on intact and wounded tissue, while still able to penetrate the host plant. It grew normally in vitro on rich media but its conidiation pattern was altered. The mutant did not produce oxalic acid and exhibited a modified regulation of the production of some secreted proteins (acid protease 1 and endopolygalacturonase 1). Culture filtrates of the mutant triggered an important oxidative burst in grapevine (Vitis vinifera) suspension cells, and the mutant-plant interaction resulted in the formation of hypersensitive response-like necrosis. Genetic segregation analyses revealed that the pathogenicity phenotype was linked to a single locus, but showed that the mutated gene was not tagged by the plasmid pAN7-1. Mutant A336 is the first oxalate-deficient mutant to be described in B. cinerea and it differs from all the nonpathogenic B. cinerea mutants described to date.


Subject(s)
Botrytis/pathogenicity , Mutation , Vitis/microbiology , Arabidopsis/anatomy & histology , Arabidopsis/microbiology , Arabidopsis/physiology , Botrytis/genetics , Botrytis/metabolism , Enzymes/metabolism , Fungal Proteins/genetics , Fungal Proteins/physiology , Gene Expression Regulation, Fungal , Hydrogen-Ion Concentration , Immunity, Innate/physiology , Mutagenesis, Insertional , Onions/cytology , Onions/microbiology , Oxalic Acid/metabolism , Phaseolus/anatomy & histology , Phaseolus/microbiology , Phaseolus/physiology , Plant Leaves/anatomy & histology , Plant Leaves/microbiology , Reactive Oxygen Species/metabolism , Vitis/anatomy & histology , Vitis/physiology
16.
Curr Genet ; 46(4): 240-6, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15349749

ABSTRACT

We report on the development of a new PCR technique for the isolation of genomic fragments that flank known DNA sequences. This technique, single oligonucleotide nested (SON)-PCR, relies on only two amplification reactions with two or three nested sequence-specific primers. It allows the isolation of DNA regions located on either side of a known DNA sequence, with high specificity. DNA products of 2 kb in size can be generated that all contain one copy of the same primer at both ends. Sequence analysis of these products indicates that the binding of the primers to non-specific DNA sites mainly depends on their overall complementarity to the target sequence. Moreover, analysis shows that short extensions of the primers can occur during the first amplification reaction and that a 2-bp overlap between subsequent primers can target their annealing to their predecessor's sequence. Ninety percent of the DNA products larger than 0.5 kb correspond to fragments of interest and we obtained successful results with various templates and primer sets. SON-PCR therefore seems a very efficient and widely applicable method for the rapid identification of large unknown DNA regions. Based on available expressed sequence tags, this technique was applied to isolate the palH and pacC genes of the phytopathogenic fungus Botrytis cinerea, with their 5' or 3' flanking regions.


Subject(s)
Botrytis/genetics , Expressed Sequence Tags , Genes, Fungal , Polymerase Chain Reaction/methods , Base Sequence , Blotting, Southern , DNA Primers , DNA, Fungal , Sequence Homology, Nucleic Acid
17.
FEMS Microbiol Lett ; 237(2): 227-33, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15321666

ABSTRACT

The acid protease Acp1 is produced by Sclerotinia sclerotiorum during plant infection. We explored the mechanism involved in the triggering of that production and found that cyclic AMP played a positive role. Acp1 could be produced in the sole presence of exogenous cyclic AMP. The use of molecules known to increase or decrease the intracellular cyclic AMP levels confirmed the impact of this nucleotide on the protease production and suggested its endogenous site of action. Further pharmacological studies showed the specific effect of cyclic AMP on Acp1 production and suggested that protein kinase A would be its likely target. Together, these results provide the first indication that the production of a pathogenesis-related fungal protease could depend on a cyclic AMP/Protein kinase A signalling pathway.


Subject(s)
Ascomycota/enzymology , Cyclic AMP/physiology , Endopeptidases/biosynthesis , Fungal Proteins/biosynthesis , Ascomycota/drug effects , Ascomycota/metabolism , Cyclic AMP/metabolism , Cyclic AMP/pharmacology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Endopeptidases/genetics , Enzyme Induction , Enzyme Inhibitors/pharmacology , Fungal Proteins/genetics , Gelatin/pharmacology , Hydrogen-Ion Concentration , Nitrogen/metabolism
18.
FEMS Microbiol Lett ; 227(2): 163-9, 2003 Oct 24.
Article in English | MEDLINE | ID: mdl-14592704

ABSTRACT

In the necrotrophic fungus Sclerotinia sclerotiorum, secretion of polygalacturonases (PGs) and decrease of the environmental pH via oxalic acid production are considered as the main pathogenicity determinants. In order to evaluate the relationship between these two aspects of the infection process, we analyzed the expression of the endoPG-encoding genes pg1-3. Transcription of pg1-3 was not carbon regulated but was strictly controlled by pH and highly favored in a narrow range of acidic pH. During plant infection, a pH gradient was established in relation to oxalic acid secretion. Transcripts of pg1-3 were localized to the zone of colonization of healthy tissues while transcripts of genes encoding other lytic enzymes were restricted to the more acidic zones of the infected tissues. Our results show that progressive acidification of the ambient medium by the fungus is a major strategy for the sequential expression of pathogenicity factors.


Subject(s)
Ascomycota/enzymology , Gene Expression Regulation, Fungal , Polygalacturonase/metabolism , Repressor Proteins/metabolism , Ascomycota/genetics , Carbon/metabolism , Hydrogen-Ion Concentration , Oxalic Acid/metabolism , Plant Diseases/microbiology , Polygalacturonase/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Transcription, Genetic
19.
Curr Genet ; 44(3): 164-71, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12937946

ABSTRACT

The Agrobacterium tumefaciens-mediated transfer of foreign DNA to the phytopathogenic fungus Botrytis cinerea was investigated. Fifteen stable transformants per 10(6) conidia were consistently produced. Monokaryons were purified in a single step and their molecular analysis demonstrated the random integration of predominantly single or tandem copies of the foreign DNA into their genome. Thermal asymmetric interlaced PCR performed directly on conidia led to the rapid identification of the genomic DNA sequences that flanked the integration sites of the transfer-DNA. Transcriptional fusions of green fluorescent protein and beta-glucuronidase-encoding genes to the promoter of the secreted proteolytic enzyme ACP1 were realised to validate the system. We provide herein observations of B. cinerea hyphae producing green fluorescent protein or beta-glucuronidase under growth conditions similar to those known to induce transcription of the acp1 gene.


Subject(s)
Agrobacterium tumefaciens/genetics , Ascomycota/genetics , Botrytis/genetics , DNA, Bacterial/genetics , Transformation, Genetic/genetics , Blotting, Southern , Blotting, Western , DNA Primers , DNA, Bacterial/metabolism , Glucuronidase , Green Fluorescent Proteins , Luminescent Proteins , Microscopy, Fluorescence , Plasmids/genetics , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...