Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 433(21): 167217, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34454945

ABSTRACT

Our poor understanding of the mechanism by which the peptide-hormone H2 relaxin activates its G protein coupled receptor, RXFP1 and the related receptor RXFP2, has hindered progress in its therapeutic development. Both receptors possess large ectodomains, which bind H2 relaxin, and contain an N-terminal LDLa module that is essential for receptor signaling and postulated to be a tethered agonist. Here, we show that a conserved motif (GDxxGWxxxF), C-terminal to the LDLa module, is critical for receptor activity. Importantly, this motif adopts different structures in RXFP1 and RXFP2, suggesting distinct activation mechanisms. For RXFP1, the motif is flexible, weakly associates with the LDLa module, and requires H2 relaxin binding to stabilize an active conformation. Conversely, the GDxxGWxxxF motif in RXFP2 is more closely associated with the LDLa module, forming an essential binding interface for H2 relaxin. These differences in the activation mechanism will aid drug development targeting these receptors.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, Peptide/chemistry , Relaxin/chemistry , Amino Acid Motifs , Binding Sites , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Kinetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Relaxin/genetics , Relaxin/metabolism , Signal Transduction
2.
ACS Pharmacol Transl Sci ; 3(4): 690-705, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32832871

ABSTRACT

Cell-cell communication via endogenous peptides and their receptors is vital for controlling all aspects of human physiology and most peptides signal through G protein-coupled receptors (GPCRs). Disordered peptides bind GPCRs through complex modes for which there are few representative crystal structures. The disordered peptide neurotensin (NT) is a neuromodulator of classical neurotransmitters such as dopamine and glutamate, through activation of neurotensin receptor 1 (NTS1). While several experimental structures show how NT binds NTS1, details about the structural dynamics of NT during and after binding NTS1, or the role of peptide dynamics on receptor activation, remain obscure. Here saturation transfer difference (STD) NMR revealed that the binding mode of NT fragment NT10-13 is heterogeneous. Epitope maps of NT10-13 at NTS1 suggested that tyrosine 11 (Y11) samples other conformations to those observed in crystal structures of NT-bound NTS1. Molecular dynamics (MD) simulations confirmed that when NT is bound to NTS1, residue Y11 can exist in two χ1 rotameric states, gauche plus (g+) or gauche minus (g-). Since only the g+ Y11 state is observed in all the structures solved to date, we asked if the g- state is important for receptor activation. NT analogues with Y11 replaced with 7-OH-Tic were synthesized to restrain the dynamics of the side chain. P(OH-TIC)IL bound NTS1 with the same affinity as NT10-13 but did not activate NTS1, instead acted as an antagonist. This study highlights that flexibility of Y11 in NT may be required for NT activation of NTS1.

3.
Pharmacol Res Perspect ; 7(4): e00513, 2019 08.
Article in English | MEDLINE | ID: mdl-31384473

ABSTRACT

Relaxin family peptide 1 (RXFP1) is the receptor for relaxin a peptide hormone with important therapeutic potential. Like many G protein-coupled receptors (GPCRs), RXFP1 has been reported to form homodimers. Given the complex activation mechanism of RXFP1 by relaxin, we wondered whether homodimerization may be explicitly required for receptor activation, and therefore sought to determine if there is any relaxin-dependent change in RXFP1 proximity at the cell surface. Bioluminescence resonance energy transfer (BRET) between recombinantly tagged receptors is often used in GPCR proximity studies. RXFP1 targets poorly to the cell surface when overexpressed in cell lines, with the majority of the receptor proteins sequestered within the cell. Thus, any relaxin-induced changes in RXFP1 proximity at the cell surface may be obscured by BRET signal originating from intracellular compartments. We therefore, utilized the newly developed split luciferase system called HiBiT to specifically label the extracellular terminus of cell surface RXFP1 receptors in combination with mCitrine-tagged receptors, using the GABAB heterodimer as a positive control. This demonstrated that the BRET signal detected from RXFP1-RXFP1 proximity at the cell surface does not appear to be due to stable physical interactions. The fact that there is also no relaxin-mediated change in RXFP1-RXFP1 proximity at the cell surface further supports these conclusions. This work provides a basis by which cell surface GPCR proximity and expression levels can be specifically studied using a facile and homogeneous labeling technique such as HiBiT.


Subject(s)
Luciferases/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/chemistry , Receptors, Peptide/metabolism , Bioluminescence Resonance Energy Transfer Techniques , HEK293 Cells , Humans , Protein Multimerization , Relaxin/metabolism , Staining and Labeling
4.
J Med Genet ; 56(11): 727-733, 2019 11.
Article in English | MEDLINE | ID: mdl-31167797

ABSTRACT

BACKGROUND: Cryptorchidism or failure of testicular descent is the most common genitourinary birth defect in males. While both the insulin-like peptide 3 (INSL3) and its receptor, relaxin family peptide receptor 2 (RXFP2), have been demonstrated to control testicular descent in mice, their link to human cryptorchidism is weak, with no clear cause-effect demonstrated. OBJECTIVE: To identify the genetic cause of a case of familial cryptorchidism. METHODS: We recruited a family in which four boys had isolated bilateral cryptorchidism. A fourth-degree consanguineous union in the family was reported. Whole exome sequencing was carried out for the four affected boys and their parents, and variants that segregated with the disorder and had a link to testis development/descent were analysed. Functional analysis of a RXFP2 variant in cell culture included receptor localisation, ligand binding and cyclic AMP (cAMP) pathway activation. RESULTS: Genomic analysis revealed a homozygous missense variant in the RXFP2 gene (c.1496G>A .p.Gly499Glu) in all four affected boys and heterozygous in both parents. No other variant with a link to testis biology was found. The RXFP2 variant is rare in genomic databases and predicted to be damaging. It has not been previously reported. Functional analysis demonstrated that the variant protein had poor cell surface expression and failed to bind INSL3 or respond to the ligand with cAMP signalling. CONCLUSION: This is the first reported genomic analysis of a family with multiple individuals affected with cryptorchidism. It demonstrates that recessive variants in the RXFP2 gene underlie familial cryptorchidism and solidifies the link between this gene and testicular descent in humans.


Subject(s)
Cryptorchidism/genetics , Genes, Recessive/genetics , Mutation, Missense/genetics , Receptors, G-Protein-Coupled/genetics , Cell Line , HEK293 Cells , Humans , Male , Signal Transduction/genetics , Testis/pathology
5.
iScience ; 11: 93-113, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30594862

ABSTRACT

The peptide hormone H2 relaxin has demonstrated promise as a therapeutic, but mimetic development has been hindered by the poorly understood relaxin receptor RXFP1 activation mechanism. H2 relaxin is hypothesized to bind to two distinct ECD sites, which reorientates the N-terminal LDLa module to activate the transmembrane domain. Here we provide evidence for this model in live cells by measuring bioluminescence resonance energy transfer (BRET) between nanoluciferase-tagged RXFP1 constructs and fluorescently labeled H2 relaxin (NanoBRET). Additionally, we validate these results using the related RXFP2 receptor and chimeras with an inserted RXFP1-binding domain utilizing NanoBRET and nuclear magnetic resonance studies on recombinant proteins. We therefore provide evidence for the multi-component molecular mechanism of H2 relaxin binding to RXFP1 on the full-length receptor in cells. Also, we show the utility of NanoBRET real-time binding kinetics to reveal subtle binding complexities, which may be overlooked in traditional equilibrium binding assays.

6.
Sci Rep ; 7(1): 3294, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607406

ABSTRACT

Relaxin family peptide receptor 2 (RXFP2) is a GPCR known for its role in reproductive function. It is structurally related to the human relaxin receptor RXFP1 and can be activated by human gene-2 (H2) relaxin as well as its cognate ligand insulin-like peptide 3 (INSL3). Both receptors possess an N-terminal low-density lipoprotein type a (LDLa) module that is necessary for activation and is joined to a leucine-rich repeat domain by a linker. This linker has been shown to be important for H2 relaxin binding and activation of RXFP1 and herein we investigate the role of the equivalent region of RXFP2. We demonstrate that the linker's highly-conserved N-terminal region is essential for activation of RXFP2 in response to both ligands. In contrast, the linker is necessary for H2 relaxin, but not INSL3, binding. Our results highlight the distinct mechanism by which INSL3 activates RXFP2 whereby ligand binding mediates reorientation of the LDLa module by the linker region to activate the RXFP2 transmembrane domains in conjunction with the INSL3 A-chain. In contrast, relaxin activation of RXFP2 involves a more RXFP1-like mechanism involving binding to the LDLa-linker, reorientation of the LDLa module and activation of the transmembrane domains by the LDLa alone.


Subject(s)
Insulin/metabolism , Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Relaxin/metabolism , Amino Acid Sequence , Europium , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Mutant Proteins/metabolism , Protein Binding , Protein Domains , Protein Interaction Mapping , Receptors, G-Protein-Coupled/chemistry , Receptors, Peptide/chemistry
7.
Nat Commun ; 7: 11344, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27088579

ABSTRACT

H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1.


Subject(s)
Protein Interaction Domains and Motifs , Receptors, G-Protein-Coupled/chemistry , Receptors, Peptide/chemistry , Relaxin/chemistry , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , HEK293 Cells , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Structure, Secondary , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Relaxin/genetics , Relaxin/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
8.
Biochemistry ; 53(28): 4537-48, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24983702

ABSTRACT

The peptide hormone INSL3 and its receptor, RXFP2, have co-evolved alongside relaxin and its receptor, RXFP1. Both RXFP1 and RXFP2 are G protein-coupled receptors (GPCRs) containing the hallmark seven transmembrane helices in addition to a distinct ectodomain of leucine-rich repeats (LRRs) and a single low-density lipoprotein class-A (LDLa) module at the N-terminus. RXFP1 and RXFP2 are the only mammalian GPCRs known to contain an LDLa, and its removal does not perturb primary ligand binding to the LRRs; however, signaling is abolished. This presents a general mechanism whereby ligand binding induces a conformational change in the receptor to position the LDLa to elicit a signal response. Although the LDLa interaction site has not been identified, the residues important to the action have been mapped within the RXFP1 LDLa module. In this study, we comprehensively study the RXFP2 LDLa module. We determine its structure using nuclear magnetic resonance (NMR) and concurrently investigate the signaling of an RXFP2 with the LDLa removed (RXFP2-short), confirming that the LDLa is essential to signaling. We then replaced the LDLa with the second ligand binding module from the LDL receptor, LB2, creating the RXFP2-LB2 chimera. Unlike that in the equivalent RXFP1-LB2 chimera, signaling is rescued albeit modestly. Guided by the NMR structure, we dissected regions of the RXFP2 LDLa to identify specific residues that are important to signal activation. We determine that although the module is important to the activation of RXFP2, unlike the RXFP1 receptor, specific residues in the N-terminus of the domain are not involved in signal activation.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , HEK293 Cells , Humans , Insulin/genetics , Insulin/metabolism , Lipoprotein(a) , Proteins/genetics , Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repetitive Sequences, Amino Acid
9.
Article in English | MEDLINE | ID: mdl-24273532

ABSTRACT

Relaxin family peptide (RXFP) receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM) domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP-based signaling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand-mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a similar mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...