Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(6): 6315-6324, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30663300

ABSTRACT

High structural quality of crystalline organic semiconductors is the basis of their superior electrical performance. Recent progress in quasi two-dimensional (2D) organic semiconductor films challenges bulk single crystals because both demonstrate competing charge-carrier mobilities. As the thinnest molecular semiconductors, monolayers offer numerous advantages such as unmatched flexibility and light transparency as well  they are an excellent platform for sensing. Oligothiophene-based materials are among the most promising ones for light-emitting applications because of the combination of efficient luminescence and decent charge-carrier mobility. Here, we demonstrate single-crystal monolayers of unprecedented structural order grown from four alkyl-substituted thiophene and thiophene-phenylene oligomers. The monolayer crystals with lateral dimensions up to 3 mm were grown from the solution on substrates with various surface energies and roughness by drop or spin-casting with subsequent slow solvent evaporation. Our data indicate that 2D crystallization resulting in single-crystal monolayers occurs at the receding gas-solution-substrate contact line. The structural properties of the monolayers were studied by grazing-incidence X-ray diffraction/reflectivity, atomic force and differential interference contrast microscopies, and imaging spectroscopic ellipsometry. These highly ordered monolayers demonstrated an excellent performance in organic field-effect transistors approaching the best values reported for the thiophene or thiophene-phenylene oligomers. Our findings pave the way for efficient monolayer organic electronics highlighting the high potential of simple solution-processing techniques for the growth of large-size single-crystal monolayers with excellent structural order and electrical performance competing against bulk single crystals.

2.
ACS Appl Mater Interfaces ; 9(21): 18078-18086, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28488872

ABSTRACT

In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene-phenylene dimer D2-Und-PTTP-TMS (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices.

3.
ACS Appl Mater Interfaces ; 8(16): 10088-92, 2016 04 27.
Article in English | MEDLINE | ID: mdl-26785446

ABSTRACT

Thiophene-phenylene co-oligomers (TPCOs) are among the most promising materials for organic light emitting devices. Here we report on record high among TPCO single crystals photoluminescence quantum yield reaching 60%. The solution-grown crystals are stronger luminescent than the vapor-grown ones, in contrast to a common believe that the vapor-processed organic electronic materials show the highest performance. We also demonstrate that the solution-grown TPCO single crystals perform in organic field effect transistors as good as the vapor-grown ones. Altogether, the solution-grown TPCO crystals are demonstrated to hold great potential for organic electronics.

4.
Sci Rep ; 5: 11478, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26095688

ABSTRACT

The ultimate efficiency of organic solar cells (OSC) is under active debate. The solar cell efficiency is calculated from the current-voltage characteristic as a product of the open-circuit voltage (VOC), short-circuit current (JSC), and the fill factor (FF). While the factors limiting VOC and JSC for OSC were extensively studied, the ultimate FF for OSC is scarcely explored. Using numerical drift-diffusion modeling, we have found that the FF in OSC can exceed the Shockley-Queisser limit (SQL) established for inorganic p-n junction solar cells. Comparing charge generation and recombination in organic donor-acceptor bilayer heterojunction and inorganic p-n junction, we show that such distinctive properties of OSC as interface charge generation and heterojunction facilitate high FF, but the necessary condition for FF exceeding the SQL in OSC is field-dependence of charge recombination at the donor-acceptor interface. These findings can serve as a guideline for further improvement of OSC.

5.
Langmuir ; 30(50): 15327-34, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25422126

ABSTRACT

Self-assembly of highly soluble water-stable tetramethyldisiloxane-based dimer of α,α'-dialkylquaterthiophene on the water-air interface was investigated by Langmuir, grazing incidence X-ray diffraction, and X-ray reflectivity techniques. The conditions for formation of very homogeneous crystalline monolayer Langmuir-Blodgett (LB) films of the oligomer were found. Monolayer organic field-effect transistors (OFETs) based on these LB films as a semiconducting layer showed hole mobilities up to 3 × 10(-3) cm(2)/(V s), on-off ratio of 10(5), small hysteresis, and high long-term stability. The electrical performance of the LB films studied is close to that for the same material in the bulk or in the monolayer OFETs prepared from water vapor sensitive chlorosilyl derivatives of quaterthiophene by self-assembling from solution. These findings show high potential of disiloxane-based LB films in monolayer OFETs for large-area organic electronics.

6.
J Phys Chem Lett ; 4(8): 1298-303, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-26282143

ABSTRACT

Disorder in conjugated polymers is a general drawback that limits their use in organic electronics. We show that an archetypical conjugated polymer, MEH-PPV, enhances its local structural and electronic order upon addition of an electronic acceptor, trinitrofluorenone (TNF). First, acceptor addition in MEH-PPV results in a highly structured XRD pattern characteristic for semicrystalline conjugated polymers. Second, the surface roughness of the MEH-PPV films increases upon small acceptor addition, implying formation of crystalline nanodomains. Third, the low-frequency Raman features of the polymer are narrowed upon TNF addition and indicate decreased inhomogeneous broadening. Finally, the photoinduced absorption and surface photovoltage spectroscopy data show that photoexcited and dark polymer intragap electronic states assigned to deep defects disappear in the blend. We relate the enhanced order to formation of a charge-transfer complex between MEH-PPV and TNF in the electronic ground state. These findings may be of high importance to control structural properties as they demonstrate an approach to increasing the order of a conjugated polymer by using an acceptor additive.

7.
Phys Chem Chem Phys ; 12(23): 6021-6, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20396825

ABSTRACT

The donor-acceptor ground-state charge-transfer complex (CTC) formed in solution between a conjugated polymer, poly[methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV), and a low-molecular-weight organic acceptor, 2,4,7-trinitrofluorenone (TNF), is studied by optical absorption and Raman spectroscopy. The CTC absorption as a function of TNF content shows a threshold increase that is in conflict with the model commonly used for optical characterization of low-molecular-weight CTCs. The shift of MEH-PPV characteristic Raman band at 1585 cm(-1) also exhibits a threshold dependence upon TNF addition. We assign the threshold in both the absorption and Raman data to the CTC concentration. To describe the threshold in the terms of the common model, we extend it by introducing an association function instead of a constant. The association function of acceptor concentration has been calculated to be K(a) approximately 1.5-3 M(-1) below the threshold, to increase steeply up to K(a) approximately 6-7.5 M(-1) just after the threshold, and then to grow gradually up to K(a) approximately 40 M(-1). The CTC molar absorption coefficient has been found to be epsilon(CTC) = (12.7 +/- 0.6) x 10(3) M(-1) cm(-1) at 635 nm. We explain the threshold as a result of the positive feedback: the CTC formation induces planarizaton of conjugated polymer segments that in turn facilitates further CTC formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...