Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(11): 1582-1588, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37974949

ABSTRACT

Plasmepsin X (PMX) has been identified as a multistage antimalarial target. PMX is a malarial aspartyl protease essential for merozoite egress from infected red blood cells and invasion of the host erythrocytes. Previously, we reported the identification of PMX inhibitors by structure-based optimization of a cyclic guanidine core. Preclinical assessment of UCB7362, which displayed both in vitro and in vivo antimalarial activity, revealed a suboptimal dose paradigm (once daily dosing of 50 mg for 7 days for treatment of uncomplicated malaria) relative to current standard of care (three-dose regime). We report here the efforts toward extending the half-life (t1/2) by reducing metabolic clearance and increasing volume of distribution (Vss). Our efforts culminated in the identification of a biaryl series, with an expected longer t1/2 in human than UCB7362 while maintaining a similar in vitro off-target hit rate.

2.
Angew Chem Int Ed Engl ; 62(30): e202306343, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37243485

ABSTRACT

A two-step sequential strategy involving a biocatalytic dehydrogenation/remote hydrofunctionalization, as a unified and versatile approach to selectively convert linear alkanes into a large array of valuable functionalized aliphatic derivatives is reported. The dehydrogenation is carried out by a mutant strain of a bacteria Rhodococcus and the produced alkenes are subsequently engaged in a remote functionalization through a metal-catalyzed hydrometalation/migration sequence that subsequently react with a large variety of electrophiles. The judicious implementation of this combined biocatalytic and organometallic approach enabled us to develop a high-yielding protocol to site-selectively functionalize unreactive primary C-H bonds.

3.
J Am Chem Soc ; 141(41): 16486-16493, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31532664

ABSTRACT

Despite the hazardous nature of isocyanates, they remain key building blocks in bulk and fine chemical synthesis. By surrogating them with less potent and readily available formamide precursors, we herein demonstrate an alternative, mechanistic approach to selectively access a broad range of ureas, carbamates, and heterocycles via ruthenium-based pincer complex catalyzed acceptorless dehydrogenative coupling reactions. The design of these highly atom-efficient procedures was driven by the identification and characterization of the relevant organometallic complexes, uniquely exhibiting the trapping of an isocyanate intermediate. Density functional theory (DFT) calculations further contributed to shed light on the remarkably orchestrated chain of catalytic events, involving metal-ligand cooperation.

4.
Nat Chem ; 10(11): 1164-1170, 2018 11.
Article in English | MEDLINE | ID: mdl-30150723

ABSTRACT

Synthetic organic strategies that enable the catalytic and rapid assembly of a large array of organic compounds that possess multiple stereocentres in acyclic systems are somewhat rare, especially when it comes to reaching today's high standards of efficiency and selectivity. In particular, the catalytic preparation of a three-dimensional molecular layout of a simple acyclic hydrocarbon skeleton that possesses several stereocentres from simple and readily available reagents still represents a vastly uncharted domain. Here we report a rapid, modular, stereodivergent and diversity-oriented unified strategy to construct acyclic molecular frameworks that bear up to four contiguous and congested stereogenic elements, with remarkably high levels of stereocontrol and in only three catalytic steps from commercially available alkynes. A regio- and diastereoselective catalytic Heck migratory insertion reaction of alkenylcyclopropyl carbinols that merges selective C-C bond cleavage of a cyclopropane represents the key step.

5.
Angew Chem Int Ed Engl ; 57(27): 8012-8016, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29744998

ABSTRACT

The combined ruthenium-catalyzed chain walking with the nickel-catalyzed cross-coupling reaction of ω-alkenyl ethers provide a unique entry to functionalized vinyl species. This transformation illustrates the power and flexibility of remote functionalization by demonstrating the compatibility of two independent reactions involving unrelated sites.

6.
J Org Chem ; 83(7): 3497-3515, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29537856

ABSTRACT

Several approaches using organozirconocene species for the remote cleavage of strained three-membered ring carbocycles are described. ω-Ene polysubstituted cyclopropanes, alkylidenecyclopropanes, ω-ene spiro[2.2]pentanes, and ω-ene cyclopropyl methyl ethers were successfully transformed into stereodefined organometallic intermediates, allowing an easy access to highly stereoenriched acyclic scaffolds in good yields and, in most cases, excellent selectivities. DFT calculations and isotopic labeling experiments were performed to delineate the origin of the obtained chemo- and stereoselectivities, demonstrating the importance of microreversibility.

7.
Chem Sci ; 8(1): 334-339, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28451177

ABSTRACT

The regio- and diastereoselective zirconocene-catalyzed carbomagnesiation of cyclobutenes is herein reported to afford configurationally stable cyclobutylmagnesium species that could subsequently react with a large variety of electrophiles to give polysubstituted cyclobutane species as a single diastereoisomer.

8.
Nat Commun ; 8: 14200, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169276

ABSTRACT

Combining functionalization at a distant position from a reactive site with the creation of several consecutive stereogenic centres, including the formation of a quaternary carbon stereocentre, in acyclic system represents a pinnacle in organic synthesis. Here we report the regioselective Heck arylation of terminal olefins as a distant trigger for the ring-opening of cyclopropanes. This Pd-catalysed unfolding of the strained cycle, driving force of the chain-walking process, remarkably proved its efficiency and versatility, as the reaction proceeded regardless of the molecular distance between the initiation (double bond) and termination (alcohol) sites. Moreover, employing stereodefined polysubstituted cyclopropane vaults allowed to access sophisticated stereoenriched acyclic scaffolds in good yields. Conceptually, we demonstrated that merging catalytically a chain walking process with a selective C-C bond cleavage represents a powerful approach to construct linear skeleton possessing two stereogenic centres.

9.
Nat Chem ; 8(3): 209-19, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26892551

ABSTRACT

Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...