Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Vet Microbiol ; 282: 109754, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116423

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) belonging to the "top 7″ serotypes (i.e. O157:H7, O26:H11, O45:H2, O103:H2, O111:H8, O121:H19 and O145:H28) are considered as the main pathogenic enterohemorrhagic E. coli (EHEC). As ruminants, including calves, are a reservoir of pathogenic STEC, we investigated the prevalence, major virulence genes and genetic relatedness of top7 STEC in veal calves slaughtered in France, through the analysis of 500 fecal samples collected over one year. Thirty top7 STEC isolates were recovered from 28 calves. The two serotypes O103:H2 and O26:H11 accounted for 73% of STEC strains, followed by O145:H28 and O157:H7. STEC super-shedding levels were identified for two calves carrying STEC O103:H2 and O157:H7, respectively. Thirty-nine atypical enteropathogenic E. coli (aEPEC) were also recovered from calves. Overall, a prevalence of 5.6% top7 STEC-positive calves was found, thus higher than that previously determined for the French slaughtered adult cattle (1.8%), confirming the impact of animals age on STEC carriage. Most top7 STEC strains carried the stx1a subtype suggesting a low pathogenicity for humans. Seasonal variation in STEC carriage was also observed, with two peaks of higher prevalence during spring and fall. Genetic similarity of top7 STEC isolates was found for calves originating from the same fattening facilities, reflecting STEC circulation between animals kept in groups. This study indicates that veal calves grown for meat production are at higher risk of shedding top7 STEC compared to adult cattle. They thus represent ideal targets for the implementation of farm interventions aimed at reducing STEC burden in cattle and the food chain.


Subject(s)
Cattle Diseases , Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Red Meat , Shiga-Toxigenic Escherichia coli , Humans , Cattle , Animals , Shiga-Toxigenic Escherichia coli/genetics , Serogroup , Escherichia coli Proteins/genetics , Prevalence , France/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Cattle Diseases/epidemiology
2.
Antibiotics (Basel) ; 11(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36009940

ABSTRACT

The aim of this study was to determine the percentage of healthy veal calves carrying mcr-positive E. coli strains at the time of slaughter in France. Fecal samples were selectively screened for mcr-positive E. coli isolates using media supplemented with colistin. Screening for mcr genes was also carried out in E. coli isolates resistant to critically important antimicrobials used in human medicine recovered from the same fecal samples. Overall, 28 (16.5%) out of the 170 veal calves tested carried mcr-positive E. coli. As some calves carried several non-redundant mcr-positive strains, 41 mcr-positive E. coli were recovered. Thirty-one and seven strains were positive for mcr-1 and mcr-3 genes, respectively, while no strain was positive for the mcr-2 gene. Co-carriage of mcr-1 and mcr-3 was identified in three strains. All mcr-positive E. coli isolates, except one, were multidrug-resistant, with 56.1% being ciprofloxacin-resistant and 31.7% harboring blaCTX-M genes. All mcr-3-positive E. coli carried blaCTX-M genes, mainly blaCTX-M-55. This study highlights the high prevalence of mcr-positive E. coli strains in feces of veal calves at the time of slaughter. It also points out the multidrug (including ciprofloxacin) resistance of such strains and the co-occurrence of mcr-3 genes with blaCTX-M-55 genes.

3.
Front Vet Sci ; 9: 852475, 2022.
Article in English | MEDLINE | ID: mdl-35411306

ABSTRACT

Cattle are carriers, without clinical manifestations, of enterohemorrhagic Escherichia coli (EHEC) O157:H7 responsible for life-threatening infections in humans. A better identification of factors playing a role in maintaining persistence of such strains in cattle is required to develop more effective control measures. Hence, we conducted a study to identify farms with a persistent circulation of EHEC O157:H7. The EHEC O157:H7 herd status of 13 farms, which had previously provided bovine EHEC O157:H7 carriers at slaughter was investigated. Two farms were still housing positive young bulls, and this was true over a 1-year period. Only one fecal sample could be considered from a supershedder, and 60% of the carriers shed concentrations below 10 MPN/g. Moreover, EHEC O157:H7 represented minor subpopulations of E. coli. PFGE analysis of the EHEC O157:H7 strains showed that persistent circulation was due either to the persistence of a few predominant strains or to the repeated exposure of cattle to various strains. Finally, we compared fecal microbial communities of shedders (S) (n = 24) and non-shedders (NS) (n = 28), including 43 young bulls and nine cows, from one farm. Regarding alpha diversity, no significant difference between S vs. NS young bulls (n = 43) was observed. At the genus level, we identified 10 amplicon sequence variant (ASV) indicators of the S or NS groups. The bacterial indicators of S belonged to the family XIII UCG-001, Slackia, and Campylobacter genera, and Ruminococcaceae NK4A21A, Lachnospiraceae-UGC-010, and Lachnospiraceae-GCA-900066575 groups. The NS group indicator ASVs were affiliated to Pirellulaceae-1088-a5 gut group, Anaerovibrio, Victivallis, and Sellimonas genera. In conclusion, the characteristics enhancing the persistence of some predominant strains observed here should be explored further, and studies focused on mechanisms of competition among E. coli strains are also needed.

4.
Emerg Infect Dis ; 28(2): 382-393, 2022 02.
Article in English | MEDLINE | ID: mdl-35075992

ABSTRACT

Edema disease is an often fatal enterotoxemia caused by specific strains of Shiga toxin-producing Escherichia coli (STEC) that affect primarily healthy, rapidly growing nursery pigs. Recently, outbreaks of edema disease have also emerged in France in wild boars. Analysis of STEC strains isolated from wild boars during 2013-2019 showed that they belonged to the serotype O139:H1 and were positive for both Stx2e and F18 fimbriae. However, in contrast to classical STEC O139:H1 strains circulating in pigs, they also possessed enterotoxin genes sta1 and stb, typical of enterotoxigenic E. coli. In addition, the strains contained a unique accessory genome composition and did not harbor antimicrobial-resistance genes, in contrast to domestic pig isolates. These data thus reveal that the emergence of edema disease in wild boars was caused by atypical hybrid of STEC and enterotoxigenic E. coli O139:H1, which so far has been restricted to the wildlife environment.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Animals , Clone Cells , Edema , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Sus scrofa , Swine
5.
Microb Genom ; 7(5)2021 05.
Article in English | MEDLINE | ID: mdl-33961542

ABSTRACT

The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (STs) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amounts of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.


Subject(s)
Escherichia coli/metabolism , Mutagens/metabolism , Peptides/metabolism , Polyketides/metabolism , Animals , Cattle , DNA, Bacterial/genetics , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Genetic Variation , Genomic Islands , Humans , Peptides/genetics , Phylogeny , Sequence Analysis, DNA , Virulence , Virulence Factors/genetics
6.
Genome Res ; 29(9): 1495-1505, 2019 09.
Article in English | MEDLINE | ID: mdl-31439690

ABSTRACT

How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/classification , Virulence Factors/genetics , Whole Genome Sequencing/methods , Animals , Cattle , Enteropathogenic Escherichia coli/classification , Enteropathogenic Escherichia coli/genetics , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Proteins/genetics , Evolution, Molecular , Gene Regulatory Networks , Genome, Bacterial , Humans , Phylogeny , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/pathogenicity , Symbiosis
7.
Microb Drug Resist ; 24(6): 852-859, 2018.
Article in English | MEDLINE | ID: mdl-29723122

ABSTRACT

The aim of this study was to compare the antimicrobial resistance profiles of top five enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) to E. coli isolated from the fecal flora of the same adult cattle. Previous prevalence studies had led to the isolation by immunomagnetic separation (IMS) of 39 EHEC and 80 EPEC. Seven EHEC were resistant (17.9%), and six were multidrug resistant (MDR) (15.4%). None of the top five EHEC was resistant to azithromycin. Nine EPEC O26:H11 (11.3%) were resistant. They were all resistant to tetracycline, and four were MDR (5.0%). An E. coli strain was isolated from the feces (without preselection by IMS) of 97 bovine carriers of top 5 strains. All these strains were susceptible to antibiotics. Comparative analyses did not reveal any differences between the cytotoxic activities of resistant EHEC and their susceptible counterparts or in the production of attachment and effacement lesions. These results highlighted the higher percentage of resistance of EHEC and EPEC strains compared to other E. coli. They also showed that resistance traits did not have any impact on the expression of virulence phenotypes in EHEC strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Enterohemorrhagic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/drug effects , Animals , Cattle , Drug Resistance, Bacterial/genetics , Enterohemorrhagic Escherichia coli/genetics , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Proteins/genetics , Feces/microbiology , Serogroup , Virulence/genetics
8.
Front Microbiol ; 9: 375, 2018.
Article in English | MEDLINE | ID: mdl-29593666

ABSTRACT

Healthy cattle are the primary reservoir for O157:H7 Shiga toxin-producing E. coli responsible for human food-borne infections. Because farm environment acts as a source of cattle contamination, it is important to better understand the factors controlling the persistence of E. coli O157:H7 outside the bovine gut. The E. coli O157:H7 strain MC2, identified as a persistent strain in French farms, possessed the characteristics required to cause human infections and genetic markers associated with clinical O157:H7 isolates. Therefore, the capacity of E. coli MC2 to survive during its transit through the bovine gastro-intestinal tract (GIT) and to respond to stresses potentially encountered in extra-intestinal environments was analyzed. E. coli MC2 survived in rumen fluids, grew in the content of posterior digestive compartments and survived in bovine feces at 15°C predicting a successful transit of the bacteria along the bovine GIT and its persistence outside the bovine intestine. E. coli MC2 possessed the genetic information encoding 14 adherence systems including adhesins with properties related to colonization of the bovine intestine (F9 fimbriae, EhaA and EspP autotransporters, HCP pilus, FdeC adhesin) reflecting the capacity of the bacteria to colonize different segments of the bovine GIT. E. coli MC2 was also a strong biofilm producer when incubated in fecal samples at low temperature and had a greater ability to form biofilms than the bovine commensal E. coli strain BG1. Furthermore, in contrast to BG1, E. coli MC2 responded to temperature stresses by inducing the genes cspA and htrA during its survival in bovine feces at 15°C. E. coli MC2 also activated genes that are part of the GhoT/GhoS, HicA/HicB and EcnB/EcnA toxin/antitoxin systems involved in the response of E. coli to nutrient starvation and chemical stresses. In summary, the large number of colonization factors known to bind to intestinal epithelium and to biotic or abiotic surfaces, the capacity to produce biofilms and to activate stress fitness genes in bovine feces could explain the persistence of E. coli MC2 in the farm environment.

9.
Int J Hyg Environ Health ; 221(2): 355-363, 2018 03.
Article in English | MEDLINE | ID: mdl-29307571

ABSTRACT

Wastewater of human and animal may contain Shiga toxin-producing (STEC) and enteropathogenic (EPEC) Escherichia coli. We evaluated the prevalence of such strains in a wastewater treatment plant (WWTP) receiving both city and slaughterhouse wastewater. PCR screenings were performed on 12,248 E. coli isolates. The prevalence of STEC in city wastewater, slaughterhouse wastewater and treated effluent was 0.22%, 0.07% and 0.22%, respectively. The prevalence of EPEC at the same sampling sites was 0.63%, 0.90% and 0.55%. No significant difference was observed between the sampling points. Treatment had no impact on these prevalences. Enterohemorrhagic E. coli (EHEC) O157:H7 and O111:H8 were isolated from the treated effluent rejected into the river. The characteristics of STEC and EPEC differed according to their origin. City wastewater contained STEC with various stx subtypes associated with serious human disease, whereas slaughterhouse wastewater contained exclusively STEC with stx2e subtype. All the EPEC strains were classified as atypical and were screened for the ε, γ1 and ß1 subtypes, known to be associated with the EHEC mainly involved in human infections in France. In city wastewater, eae subtypes remained largely unidentified; whereas eae-ß1 was the most frequent subtype in slaughterhouse wastewater. Moreover, the EPEC isolated from slaughterhouse wastewater were positive for other EHEC-associated virulence markers, including top five serotypes, the ehxA gene, putative adherence genes and OI-122 associated genes. The possibility that city wastewater could contain a pool of stx genes associated with human disease and that slaughterhouse wastewater could contain a pool of EPEC sharing similar virulence genes with EHEC, was highlighted. Mixing of such strains in WWTP could lead to the emergence of EHEC by horizontal gene transfer.


Subject(s)
Abattoirs , Enteropathogenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/isolation & purification , Wastewater/microbiology , Drug Resistance, Bacterial , Enteropathogenic Escherichia coli/genetics , Gene Transfer, Horizontal , Microbial Sensitivity Tests , Phylogeny , Shiga-Toxigenic Escherichia coli/genetics , Virulence Factors/genetics , Water Purification
10.
Genome Announc ; 5(40)2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28983004

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) with serotype O157:H7 is a major foodborne pathogen. Here, we report the draft genome sequence of EHEC O157:H7 strain MC2 isolated from cattle in France. The assembly contains 5,400,376 bp that encoded 5,914 predicted genes (5,805 protein-encoding genes and 109 RNA genes).

11.
Environ Microbiol Rep ; 8(5): 789-797, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27402421

ABSTRACT

Wastewater treatment plants (WWTP) receiving effluents from food-producing animals and humans may contribute to the spread of extended-spectrum ß-lactamases (ESBL)-carrying plasmids. This study was designed to investigate extended-spectrum cephalosporin resistant Escherichia coli strains, CTX-M distributions and the genetic lineage of blaCTX-M -carrying plasmids from urban and slaughterhouse wastewaters. The level of extended-spectrum cephalosporin-resistant E. coli in slaughterhouse wastewater entering the WWTP was negligible compared with that of urban wastewater. The blaCTX-M-1 gene was predominant in slaughterhouse wastewater whereas diverse blaCTX-M genes were encountered in urban wastewater and WWTP outlet. Characterization of the main CTX-M-producing E. coli isolates by antibiotic resistance phenotyping, genotyping and typing of plasmids carrying blaCTX-M genes revealed that blaCTX-M-1 and blaCTX-M-15 genes were harboured by the predominant blaCTX-M-1 IncI1/ST3 and blaCTX-M-15 F31:A4:B1 plasmids, which were recovered from unrelated E. coli genotypes in both slaughterhouse and urban wastewaters. This study highlighted the spread of predominant blaCTX-M-1 and blaCTX-M-15 plasmid lineages in diverse E. coli genotypes from humans and food-producing animals, their mixing in WWTP and final release into the aquatic environment. This could have a serious negative impact on public health and requires further evaluation.

12.
Water Res ; 88: 30-38, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26460853

ABSTRACT

The goal of this study was to investigate the involvement of bovine slaughterhouse effluents and biosolids in the risk of environmental dissemination of pathogenic and antibiotic-resistant Escherichia coli. Several samples were collected from one adult cattle and one veal calf slaughterhouse wastewater treatment plant (WWTP). The treatment process had no impact on the percentage of Shiga toxin-producing E. coli (STEC) and on the percentage of atypical enteropathogenic E. coli (aEPEC). A STEC O157:H7 was isolated from the thickened sludge of the adult cattle slaughterhouse. As thickened sludge is intended to be spread on agricultural lands, the detection of this pathogenic strain is a public health issue. The percentage of antibiotic-resistant E. coli was 5.0% and 87.5% in wastewater from the adult cattle and the veal calf slaughterhouse, respectively. These percentages were not significantly different after treatment. Integron-bearing E. coli isolates were only detected in the veal calf slaughterhouse WWTP with percentages above 50.0% for all sampling points whatever the step of the treatment process. Taken together, these findings highlighted the fact that different public health risks might be associated with adult cattle or veal calf slaughterhouses regarding the dissemination of pathogenic and antibiotic-resistant E. coli isolates into the environment.


Subject(s)
Abattoirs , Drug Resistance, Bacterial , Escherichia coli/isolation & purification , Wastewater/microbiology , Age Factors , Animals , Cattle , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli O157/classification , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , France , Integrons , Microbial Sensitivity Tests , Sewage/microbiology , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification
14.
Genome Announc ; 3(1)2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25700408

ABSTRACT

The consumption of raw milk cheese can expose populations to Shiga toxin-producing Escherichia coli (STEC). We report here the genome sequence of an E. coli O26:H11 strain isolated from humans during the first raw milk cheese outbreak described in France (2005).

15.
Appl Environ Microbiol ; 81(4): 1397-1405, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25527532

ABSTRACT

The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these "top five" STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples.O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P<0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover,simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.


Subject(s)
Asymptomatic Diseases/epidemiology , Carrier State/microbiology , Cattle/microbiology , Disease Reservoirs/veterinary , Shiga-Toxigenic Escherichia coli/isolation & purification , Abattoirs , Animals , Carrier State/epidemiology , Disease Reservoirs/microbiology , Escherichia coli Proteins/genetics , Female , France/epidemiology , Male , Meat/microbiology , Prevalence , Shiga Toxins/genetics , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics
16.
Vet Res ; 45: 76, 2014 Aug 10.
Article in English | MEDLINE | ID: mdl-25106491

ABSTRACT

F17 fimbriae are produced by pathogenic Escherichia coli involved in diarrhea and septicemia outbreaks in calves and lambs. These proteins result from the expression of four different clustered genes, namely f17A, f17D, f17C and f17G, encoding a pilin protein, a periplasmic protein, an anchor protein and an adhesin protein, respectively. Several variants of f17A and f17G genes have been reported and found genetically associated with typical virulence factors of bovine pathogenic E. coli strains. In this study, a new F17e-A variant, closely related to F17b-A, was identified from a collection of 58 E. coli isolates from diarrheic calves in Iran. While highly prevalent in Iranian F17-producing clinical isolates from calves, this variant was rare among E. coli from a French healthy adult bovine population, suggesting a possible association with virulence. The f17Ae gene was also found in the genome of the Shiga-like toxin variant Stx1d-producing bovine E. coli strain MHI813, and belonged to a gene cluster also encoding a new F17-G3 variant, which greatly differed from F17-G1 and F17-G2. This gene cluster was located on a pathogenicity island integrated in the tRNA pheV gene. The gene coding for a third new F17f-A variant corresponding to a combination of F17c-A and F17d-A was also identified on the pVir68 plasmid in the bovine pathogenic E. coli strain 6.0900. In conclusion, we identified three new F17-A and F17-G variants in cattle E. coli, which may also have significant impact on the development of new diagnostics and vaccination tools.


Subject(s)
Cattle Diseases/genetics , Diarrhea/veterinary , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Fimbriae, Bacterial/genetics , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Animals , Base Sequence , Cattle , Cattle Diseases/microbiology , Diarrhea/genetics , Diarrhea/microbiology , Escherichia coli/metabolism , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/metabolism , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction/veterinary
17.
Vet Microbiol ; 168(2-4): 451-4, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24388632

ABSTRACT

Enteroaggregative Shiga-toxin-producing Escherichia coli strains were responsible for a massive outbreak in Europe in 2011, and had been previously isolated from French patients. The objective of this study was to investigate the presence of enteroaggregative E. coli (EAEC) in slaughterhouse effluents (wastewater, slurry, sludge and effluents), and in river waters near these slaughterhouses. A total of 10,618 E. coli isolates were screened by PCR for the presence of EAEC-associated genetic markers (aggR, aap and aatA). None of these markers was detected in E. coli isolated from slaughterhouse samples. A unique enteroaggregative E. coli (EAEC) O126:H8 was detected in river water sampled upstream from slaughterhouse effluent discharge. These results confirmed that animals might not be reservoirs of EAEC, and that further studies are required to evaluate the role of the environment in the transmission of EAEC to humans.


Subject(s)
Abattoirs , Escherichia coli Infections/transmission , Escherichia coli/isolation & purification , Rivers/microbiology , Wastewater/microbiology , Animals , Disease Outbreaks/prevention & control , Environmental Exposure/prevention & control , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Europe , Polymerase Chain Reaction , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification
18.
Appl Environ Microbiol ; 80(3): 1177-84, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24296503

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, ß1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targeted eae subtypes. The simultaneous presence of stx, eae, and one of the five O group markers was found in 58.0% of the samples, and the five targeted stx plus eae plus O genetic combinations were detected 143 times. However, taking into consideration the association between eae subtypes and O group markers, the resulting stx plus eae subtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22 E. coli strains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive for stx, eae and an O group marker, but that were negative for the corresponding eae subtype, were successful. Characterization of the 24 E. coli isolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenic E. coli (aEPEC). Finally, the more discriminating eae subtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.


Subject(s)
Adhesins, Bacterial/genetics , Carrier State/veterinary , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Feces/microbiology , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Shiga-Toxigenic Escherichia coli/isolation & purification , Animals , Carrier State/microbiology , Cattle , Escherichia coli Infections/microbiology , Mass Screening/methods , Shiga-Toxigenic Escherichia coli/genetics , Veterinary Medicine/methods
19.
Water Res ; 47(13): 4719-29, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23774186

ABSTRACT

We compared the prevalence of pathogenic and extended-spectrum beta-lactamase (ESBL) - producing Escherichia coli in effluents of a municipal wastewater treatment plant (WWTP) receiving wastewater from a slaughterhouse. A total of 1248 isolates were screened for the presence of virulence genes associated with enterohemorrhagic E. coli (EHEC) (stx1, stx2, and eae) and extraintestinal pathogenic E. coli (ExPEC) (sfa/focDE, kpsMT K1, hlyA, papEF, afa/draBC, clbN, f17A and cnf). The prevalence of atypical enteropathogenic E. coli (EPEC) was 0.7%, 0.2% and 0.5% in city wastewater, slaughterhouse wastewater and in the treated effluent, respectively. One stx1a and stx2b-positive E. coli isolate was detected in city wastewater. The prevalence of ExPEC was significantly higher in city wastewater (8.4%), compared to slaughterhouse wastewater (1.2%). Treatment in the WWTP did not significantly impact the prevalence of ExPEC in the outlet effluent (5.0%) compared to city wastewater. Moreover, the most potentially pathogenic ExPEC were isolated from city wastewater and from the treated effluent. ESBL-producing E. coli was also mainly detected in city wastewater (1.7%), compared to slaughterhouse wastewater (0.2%), and treated effluent (0.2%). One ESBL-producing E. coli, isolated from city wastewater, was eae-ß1 positive. These results showed that pathogenic and/or ESBL-producing E. coli were mainly detected in human wastewater, and at a lesser extend in animal wastewater. Treatment failed to eliminate these strains which were discharged into the river, and then these strains could be transmitted to animals and humans via the environment.


Subject(s)
Abattoirs , Cities , Escherichia coli/enzymology , Wastewater/microbiology , Water Purification , beta-Lactamases/biosynthesis , Animals , Escherichia coli/genetics , Escherichia coli/isolation & purification , France , Genes, Bacterial/genetics , Humans , Virulence/genetics , Waste Disposal, Fluid
20.
Vet Microbiol ; 158(3-4): 443-5, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22424867

ABSTRACT

In May-June 2011, a massive outbreak of haemolytic uraemic syndrome caused by enteroaggregative Shiga toxin (Stx)-producing Escherichia coli (STEC) O104:H4 occurred in Europe, which was linked to the consumption of sprouted seeds. As ruminants are known reservoirs of STEC, this study investigated whether cattle could be a reservoir of enteroaggregative STEC O104:H4 and a potential source of transmission to humans. A total of 1468 French cattle were analysed for faecal carriage of the outbreak strain by PCR assays targeting stx2, wzx(O104), fliC(H4) and aggR genetic markers. None of the faecal samples contained the four markers simultaneously, indicating that cattle is not a reservoir of this recently emerged E. coli pathotype.


Subject(s)
Cattle Diseases/microbiology , Disease Reservoirs/microbiology , Escherichia coli Infections/microbiology , Shiga-Toxigenic Escherichia coli/genetics , Animals , Cattle , Escherichia coli Infections/epidemiology , Escherichia coli Infections/transmission , Europe/epidemiology , Feces/microbiology , Genetic Markers/genetics , Hemolytic-Uremic Syndrome/epidemiology , Hemolytic-Uremic Syndrome/microbiology , Humans , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...