Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Clin Cancer Res ; 30(9): 1739-1749, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38456660

ABSTRACT

PURPOSE: MEK inhibitors (MEKi) lack monotherapy efficacy in most RAS-mutant cancers. BCL-xL is an anti-apoptotic protein identified by a synthetic lethal shRNA screen as a key suppressor of apoptotic response to MEKi. PATIENTS AND METHODS: We conducted a dose escalation study (NCT02079740) of the BCL-xL inhibitor navitoclax and MEKi trametinib in patients with RAS-mutant tumors with expansion cohorts for: pancreatic, gynecologic (GYN), non-small cell lung cancer (NSCLC), and other cancers harboring KRAS/NRAS mutations. Paired pretreatment and day 15 tumor biopsies and serial cell-free (cf)DNA were analyzed. RESULTS: A total of 91 patients initiated treatment, with 38 in dose escalation. Fifty-eight percent had ≥3 prior therapies. A total of 15 patients (17%) had colorectal cancer, 19 (11%) pancreatic, 15 (17%) NSCLC, and 32 (35%) GYN cancers. The recommended phase II dose (RP2D) was established as trametinib 2 mg daily days 1 to 14 and navitoclax 250 mg daily days 1 to 28 of each cycle. Most common adverse events included diarrhea, thrombocytopenia, increased AST/ALT, and acneiform rash. At RP2D, 8 of 49 (16%) evaluable patients achieved partial response (PR). Disease-specific differences in efficacy were noted. In patients with GYN at the RP2D, 7 of 21 (33%) achieved a PR and median duration of response 8.2 months. No PRs occurred in patients with colorectal cancer, NSCLC, or pancreatic cancer. MAPK pathway inhibition was observed in on-treatment tumor biopsies. Reductions in KRAS/NRAS mutation levels in cfDNA correlated with clinical benefit. CONCLUSIONS: Navitoclax in combination with trametinib was tolerable. Durable clinical responses were observed in patients with RAS-mutant GYN cancers, warranting further evaluation in this population.


Subject(s)
Aniline Compounds , Mutation , Neoplasms , Proto-Oncogene Proteins p21(ras) , Pyridones , Pyrimidinones , Sulfonamides , bcl-X Protein , Humans , Female , Pyridones/administration & dosage , Pyridones/adverse effects , Pyridones/therapeutic use , Male , Middle Aged , Aniline Compounds/administration & dosage , Aniline Compounds/adverse effects , Aniline Compounds/therapeutic use , Pyrimidinones/administration & dosage , Pyrimidinones/adverse effects , Aged , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/genetics , Adult , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged, 80 and over , GTP Phosphohydrolases/genetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome
2.
Article in English | MEDLINE | ID: mdl-38110241

ABSTRACT

During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice. In this perspective, we provide an overview of how organoids are being used to investigate normal mammary biology and as preclinical models of breast cancer and discuss improvements that would enhance their utility and relevance to the field.

3.
Cell Rep ; 42(11): 113354, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37917586

ABSTRACT

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Subject(s)
Fallopian Tubes , beta Catenin , Female , Humans , beta Catenin/metabolism , Fallopian Tubes/metabolism , Transcriptome/genetics , Stem Cells/metabolism , Wnt Signaling Pathway , Organoids/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Frizzled Receptors/metabolism
4.
Cell Rep ; 42(10): 113293, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858468

ABSTRACT

Although distinct epithelial cell types have been distinguished in glandular tissues such as the mammary gland, the extent of heterogeneity within each cell type and the degree of endocrine control of this diversity across development are incompletely understood. By combining mass cytometry and cyclic immunofluorescence, we define a rich array of murine mammary epithelial cell subtypes associated with puberty, the estrous cycle, and sex. These subtypes are differentially proliferative and spatially segregate distinctly in adult versus pubescent glands. Further, we identify systematic suppression of lineage programs at the protein and RNA levels as a common feature of mammary epithelial expansion during puberty, the estrous cycle, and gestation and uncover a pervasive enrichment of ribosomal protein genes in luminal cells elicited specifically during progesterone-dominant expansionary periods. Collectively, these data expand our knowledge of murine mammary epithelial heterogeneity and connect endocrine-driven epithelial expansion with lineage suppression.


Subject(s)
Cues , Mammary Glands, Animal , Mice , Animals , Mammary Glands, Animal/metabolism , RNA/metabolism , Cell Proliferation , Spatial Analysis , Epithelial Cells/metabolism
5.
Nat Commun ; 14(1): 5206, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626143

ABSTRACT

Germline BRCA2 mutation carriers frequently develop luminal-like breast cancers, but it remains unclear how BRCA2 mutations affect mammary epithelial subpopulations. Here, we report that monoallelic Brca2mut/WT mammary organoids subjected to replication stress activate a transcriptional response that selectively expands Brca2mut/WT luminal cells lacking hormone receptor expression (HR-). While CyTOF analyses reveal comparable epithelial compositions among wildtype and Brca2mut/WT mammary glands, Brca2mut/WT HR- luminal cells exhibit greater organoid formation and preferentially survive and expand under replication stress. ScRNA-seq analysis corroborates the expansion of HR- luminal cells which express elevated transcript levels of Tetraspanin-8 (Tspan8) and Thrsp, plus pathways implicated in replication stress survival including Type I interferon responses. Notably, CRISPR/Cas9-mediated deletion of Tspan8 or Thrsp prevents Brca2mut/WT HR- luminal cell expansion. Our findings indicate that Brca2mut/WT cells activate a transcriptional response after replication stress that preferentially favours outgrowth of HR- luminal cells through the expression of interferon-responsive and mammary alveolar genes.


Subject(s)
Epithelial Cells , Interferon Type I , Cell Proliferation , Cell Cycle , Gene Expression
6.
Clin Cancer Res ; 29(11): 2131-2143, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36884217

ABSTRACT

PURPOSE: Claudin-6 (CLDN6) is expressed at elevated levels in multiple human cancers including ovarian and endometrial malignancies, with little or no detectable expression in normal adult tissue. This expression profile makes CLDN6 an ideal target for development of a potential therapeutic antibody-drug conjugate (ADC). This study describes the generation and preclinical characterization of CLDN6-23-ADC, an ADC consisting of a humanized anti-CLDN6 monoclonal antibody coupled to monomethyl auristatin E (MMAE) via a cleavable linker. EXPERIMENTAL DESIGN: A fully humanized anti-CLDN6 antibody was conjugated to MMAE resulting in the potential therapeutic ADC, CLDN6-23-ADC. The antitumor efficacy of CLDN6-23-ADC was assessed for antitumor efficacy in CLDN6-positive (CLDN6+) and -negative (CLDN6-) xenografts and patient-derived xenograft (PDX) models of human cancers. RESULTS: CLDN6-23-ADC selectively binds to CLDN6, versus other CLDN family members, inhibits the proliferation of CLDN6+ cancer cells in vitro, and is rapidly internalized in CLDN6+ cells. Robust tumor regressions were observed in multiple CLDN6+ xenograft models and tumor inhibition led to markedly enhanced survival of CLDN6+ PDX tumors following treatment with CLDN6-23-ADC. IHC assessment of cancer tissue microarrays demonstrate elevated levels of CLDN6 in 29% of ovarian epithelial carcinomas. Approximately 45% of high-grade serous ovarian carcinomas and 11% of endometrial carcinomas are positive for the target. CONCLUSIONS: We report the development of a novel ADC, CLDN6-23-ADC, that selectively targets CLDN6, a potential onco-fetal-antigen which is highly expressed in ovarian and endometrial cancers. CLDN6-23-ADC exhibits robust tumor regressions in mouse models of human ovarian and endometrial cancers and is currently undergoing phase I study.


Subject(s)
Endometrial Neoplasms , Immunoconjugates , Mice , Animals , Humans , Female , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Disease Models, Animal , Endometrial Neoplasms/drug therapy , Cell Line, Tumor
8.
Cancer Discov ; 12(11): 2666-2683, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35895872

ABSTRACT

Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE: EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.


Subject(s)
Drug Resistance, Neoplasm , Lung Neoplasms , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Humans , Cell Line, Tumor , DNA Replication , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Axl Receptor Tyrosine Kinase
9.
Dev Cell ; 57(11): 1400-1420.e7, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35617956

ABSTRACT

The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated. We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar, hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age, and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these data are a rich resource to elucidate diverse mammary cell states.


Subject(s)
Breast Neoplasms , Transcriptome , Animals , Breast , Breast Neoplasms/genetics , Female , Humans , Mammary Glands, Animal , Pregnancy , Proteomics , Transcriptome/genetics
10.
Nat Rev Cancer ; 22(6): 323-339, 2022 06.
Article in English | MEDLINE | ID: mdl-35264777

ABSTRACT

Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.


Subject(s)
Ecosystem , Neoplasms , DNA Damage , Humans , Immunotherapy , Neoplasms/pathology , Tumor Microenvironment
11.
Oncogene ; 41(1): 112-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34703030

ABSTRACT

Intratumoral heterogeneity has been described for various tumor types and models of human cancer, and can have profound effects on tumor progression and drug resistance. This study describes an in-depth analysis of molecular and functional heterogeneity among subclonal populations (SCPs) derived from a single triple-negative breast cancer cell line, including copy number analysis, whole-exome and RNA sequencing, proteome analysis, and barcode analysis of clonal dynamics, as well as functional assays. The SCPs were found to have multiple unique genetic alterations and displayed significant variation in anchorage independent growth and tumor forming ability. Analyses of clonal dynamics in SCP mixtures using DNA barcode technology revealed selection for distinct clonal populations in different in vitro and in vivo environmental contexts, demonstrating that in vitro propagation of cancer cell lines using different culture conditions can contribute to the establishment of unique strains. These analyses also revealed strong enrichment of a single SCP during the development of xenograft tumors in immune-compromised mice. This SCP displayed attenuated interferon signaling in vivo and reduced sensitivity to the antiproliferative effects of type I interferons. Reduction in interferon signaling was found to provide a selective advantage within the xenograft microenvironment specifically. In concordance with the previously described role of interferon signaling as tumor suppressor, these findings suggest that similar selective pressures may be operative in human cancer and patient-derived xenograft models.


Subject(s)
Genetic Heterogeneity , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment/genetics , Animals , Humans , Mice , Mutation , Triple Negative Breast Neoplasms/pathology
12.
Nature ; 596(7873): 576-582, 2021 08.
Article in English | MEDLINE | ID: mdl-34381210

ABSTRACT

Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure1, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment2. Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.


Subject(s)
Cell Cycle , Cell Lineage , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Antioxidants/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , DNA Barcoding, Taxonomic , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lentivirus/genetics , Neoplasm Recurrence, Local/genetics , Neoplasms/genetics , Neoplasms/metabolism , Oncogene Proteins/antagonists & inhibitors , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Transcription, Genetic/drug effects
13.
Sci Signal ; 14(686)2021 06 08.
Article in English | MEDLINE | ID: mdl-34103421

ABSTRACT

Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.


Subject(s)
Triple Negative Breast Neoplasms , Apoptosis , Apoptosis Regulatory Proteins , Cell Line, Tumor , Humans , Mitochondria , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Triple Negative Breast Neoplasms/drug therapy
14.
PLoS One ; 16(5): e0251163, 2021.
Article in English | MEDLINE | ID: mdl-33951110

ABSTRACT

Our previous pre-clinical work defined BCL-2 induction as a critical component of the adaptive response to lapatinib-mediated inhibition of HER2. To determine whether a similar BCL-2 upregulation occurs in lapatinib-treated patients, we evaluated gene expression within tumor biopsies, collected before and after lapatinib or trastuzumab treatment, from the TRIO-B-07 clinical trial (NCT#00769470). We detected BCL2 mRNA upregulation in both HER2+/ER- as well as HER2+/ER+ patient tumors treated with lapatinib or trastuzumab. To address whether mRNA expression correlated with protein expression, we evaluated pre- and post-treatment tumors for BCL-2 via immunohistochemistry. Despite BCL2 mRNA upregulation within HER2+/ER- tumors, BCL-2 protein levels were undetectable in most of the lapatinib- or trastuzumab-treated HER2+/ER- tumors. BCL-2 upregulation was evident within the majority of lapatinib-treated HER2+/ER+ tumors and was often coupled with increased ER expression and decreased proliferation. Comparable BCL-2 upregulation was not observed within the trastuzumab-treated HER2+/ER+ tumors. Together, these results provide clinical validation of the BCL-2 induction associated with the adaptive response to lapatinib and support evaluation of BCL-2 inhibitors within the context of lapatinib and other HER2-targeted receptor tyrosine kinase inhibitors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, ErbB-2/metabolism , Adult , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lapatinib/therapeutic use , Middle Aged , Neoadjuvant Therapy/methods , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , RNA, Messenger/metabolism , Trastuzumab/therapeutic use , Up-Regulation/drug effects
15.
Nat Protoc ; 16(4): 1936-1965, 2021 04.
Article in English | MEDLINE | ID: mdl-33692550

ABSTRACT

Organoid technology has revolutionized the study of human organ development, disease and therapy response tailored to the individual. Although detailed protocols are available for the generation and long-term propagation of human organoids from various organs, such methods are lacking for breast tissue. Here we provide an optimized, highly versatile protocol for long-term culture of organoids derived from either normal human breast tissues or breast cancer (BC) tissues, as well as culturing conditions for a panel of 45 biobanked samples, including BC organoids covering all major disease subtypes (triple-negative, estrogen receptor-positive/progesterone receptor-positive and human epidermal growth receptor 2-positive). Additionally, we provide methods for genetic manipulation by Lipofectamine 2000, electroporation or lentivirus and subsequent organoid selection and clonal culture. Finally, we introduce an optimized method for orthotopic organoid transplantation in mice, which includes injection of organoids and estrogen pellets without the need for surgery. Organoid derivation from tissue fragments until the first split takes 7-21 d; generation of genetically manipulated clonal organoid cultures takes 14-21 d; and organoid expansion for xenotransplantation takes >4 weeks.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Cell Culture Techniques/methods , Genetic Techniques , Organoids/pathology , Transplantation, Heterologous , Animals , Biological Specimen Banks , Clone Cells , Female , Humans , Mice , Time Factors
16.
Cell Rep ; 33(13): 108566, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378681

ABSTRACT

Aging is closely associated with increased susceptibility to breast cancer, yet there have been limited systematic studies of aging-induced alterations in the mammary gland. Here, we leverage high-throughput single-cell RNA sequencing to generate a detailed transcriptomic atlas of young and aged murine mammary tissues. By analyzing epithelial, stromal, and immune cells, we identify age-dependent alterations in cell proportions and gene expression, providing evidence that suggests alveolar maturation and physiological decline. The analysis also uncovers potential pro-tumorigenic mechanisms coupled to the age-associated loss of tumor suppressor function and change in microenvironment. In addition, we identify a rare, age-dependent luminal population co-expressing hormone-sensing and secretory-alveolar lineage markers, as well as two macrophage populations expressing distinct gene signatures, underscoring the complex heterogeneity of the mammary epithelia and stroma. Collectively, this rich single-cell atlas reveals the effects of aging on mammary physiology and can serve as a useful resource for understanding aging-associated cancer risk.


Subject(s)
Aging/psychology , Epithelial Cells/metabolism , Gene Expression Regulation , Mammary Glands, Animal/metabolism , Stromal Cells/metabolism , Transcriptome , Animals , Biomarkers/metabolism , Cells, Cultured , Cellular Senescence , Dendritic Cells/metabolism , Female , Genes, Tumor Suppressor , High-Throughput Nucleotide Sequencing/methods , Lymphocytes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Single-Cell Analysis/methods
17.
Breast Cancer Res ; 22(1): 132, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256808

ABSTRACT

BACKGROUND: Targeted therapies for triple-negative breast cancer (TNBC) are limited; however, the epidermal growth factor receptor (EGFR) represents a potential target, as the majority of TNBC express EGFR. The purpose of these studies was to evaluate the effectiveness of two EGFR-targeted antibody-drug conjugates (ADC: ABT-414; ABBV-321) in combination with navitoclax, an antagonist of the anti-apoptotic BCL-2 and BCL-XL proteins, in order to assess the translational relevance of these combinations for TNBC. METHODS: The pre-clinical efficacy of combined treatments was evaluated in multiple patient-derived xenograft (PDX) models of TNBC. Microscopy-based dynamic BH3 profiling (DBP) was used to assess mitochondrial apoptotic signaling induced by navitoclax and/or ADC treatments, and the expression of EGFR and BCL-2/XL was analyzed in 46 triple-negative patient tumors. RESULTS: Treatment with navitoclax plus ABT-414 caused a significant reduction in tumor growth in five of seven PDXs and significant tumor regression in the highest EGFR-expressing PDX. Navitoclax plus ABBV-321, an EGFR-targeted ADC that displays more effective wild-type EGFR-targeting, elicited more significant tumor growth inhibition and regressions in the two highest EGFR-expressing models evaluated. The level of mitochondrial apoptotic signaling induced by single or combined drug treatments, as measured by DBP, correlated with the treatment responses observed in vivo. Lastly, the majority of triple-negative patient tumors were found to express EGFR and co-express BCL-XL and/or BCL-2. CONCLUSIONS: The dramatic tumor regressions achieved using combined agents in pre-clinical TNBC models underscore the abilities of BCL-2/XL antagonists to enhance the effectiveness of EGFR-targeted ADCs and highlight the clinical potential for usage of such targeted ADCs to alleviate toxicities associated with combinations of BCL-2/XL inhibitors and systemic chemotherapies.


Subject(s)
Aniline Compounds/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immunoconjugates/pharmacology , Sulfonamides/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Aniline Compounds/therapeutic use , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Breast/pathology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/analysis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Immunoconjugates/therapeutic use , Mice , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism
18.
Nat Commun ; 11(1): 5799, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199705

ABSTRACT

The extent and importance of functional heterogeneity and crosstalk between tumor cells is poorly understood. Here, we describe the generation of clonal populations from a patient-derived ovarian clear cell carcinoma model which forms malignant ascites and solid peritoneal tumors upon intraperitoneal transplantation in mice. The clonal populations are engineered with secreted Gaussia luciferase to monitor tumor growth dynamics and tagged with a unique DNA barcode to track their fate in multiclonal mixtures during tumor progression. Only one clone, CL31, grows robustly, generating exclusively malignant ascites. However, multiclonal mixtures form large solid peritoneal metastases, populated almost entirely by CL31, suggesting that transient cooperative interclonal interactions are sufficient to promote metastasis of CL31. CL31 uniquely harbors ERBB2 amplification, and its acquired metastatic activity in clonal mixtures is dependent on transient exposure to amphiregulin, which is exclusively secreted by non-tumorigenic clones. Amphiregulin enhances CL31 mesothelial clearance, a prerequisite for metastasis. These findings demonstrate that transient, ostensibly innocuous tumor subpopulations can promote metastases via "hit-and-run" commensal interactions.


Subject(s)
Cell Communication , Clone Cells/pathology , Neoplasm Metastasis/pathology , Amphiregulin/metabolism , Animals , Ascites/pathology , Carcinogenesis/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation , Cell Separation , Cohort Studies , DNA Copy Number Variations/genetics , Epithelium/pathology , Female , Gene Amplification , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Ligands , Mice, SCID , Models, Biological , Peritoneal Neoplasms/secondary , Phenotype , Receptor, ErbB-2/genetics , Time Factors
19.
Nat Commun ; 11(1): 5824, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203854

ABSTRACT

In this multicenter, open-label, randomized phase II investigator-sponsored neoadjuvant trial with funding provided by Sanofi and GlaxoSmithKline (TRIO-US B07, Clinical Trials NCT00769470), participants with early-stage HER2-positive breast cancer (N = 128) were recruited from 13 United States oncology centers throughout the Translational Research in Oncology network. Participants were randomized to receive trastuzumab (T; N = 34), lapatinib (L; N = 36), or both (TL; N = 58) as HER2-targeted therapy, with each participant given one cycle of this designated anti-HER2 therapy alone followed by six cycles of standard combination chemotherapy with the same anti-HER2 therapy. The primary objective was to estimate the rate of pathologic complete response (pCR) at the time of surgery in each of the three arms. In the intent-to-treat population, we observed similar pCR rates between T (47%, 95% confidence interval [CI] 30-65%) and TL (52%, 95% CI 38-65%), and a lower pCR rate with L (25%, 95% CI 13-43%). In the T arm, 100% of participants completed all protocol-specified treatment prior to surgery, as compared to 69% in the L arm and 74% in the TL arm. Tumor or tumor bed tissue was collected whenever possible pre-treatment (N = 110), after one cycle of HER2-targeted therapy alone (N = 89), and at time of surgery (N = 59). Higher-level amplification of HER2 and hormone receptor (HR)-negative status were associated with a higher pCR rate. Large shifts in the tumor, immune, and stromal gene expression occurred after one cycle of HER2-targeted therapy. In contrast to pCR rates, the L-containing arms exhibited greater proliferation reduction than T at this timepoint. Immune expression signatures increased in all arms after one cycle of HER2-targeted therapy, decreasing again by the time of surgery. Our results inform approaches to early assessment of sensitivity to anti-HER2 therapy and shed light on the role of the immune microenvironment in response to HER2-targeted agents.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/surgery , Female , Gene Expression Regulation, Neoplastic , Humans , Lapatinib/administration & dosage , Lapatinib/therapeutic use , Middle Aged , Molecular Targeted Therapy/methods , Neoadjuvant Therapy , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Trastuzumab/administration & dosage , Trastuzumab/therapeutic use , Treatment Outcome , Tumor Microenvironment/genetics
20.
Cancer Cell ; 38(6): 829-843.e4, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33157050

ABSTRACT

Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/metabolism , Protein Interaction Maps/drug effects , Proteomics/methods , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computational Biology , Drug Resistance, Neoplasm , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Protein Array Analysis , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...