Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Fish Biol ; 91(2): 679-685, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28695574

ABSTRACT

The present study shows that small non-territorial terminal-phase males of the rusty parrotfish Scarus ferrugineus are reproductively active and are comparable with initial-phase males in behaviour, rates of participation during group-spawning and success in streaking into pair spawning. Large territorial terminal-phase males defend contiguous territories for several hours during the morning where they pair spawn with initial-phase females.


Subject(s)
Fishes/physiology , Sexual Behavior, Animal , Animals , Female , Indian Ocean , Male , Reproduction , Territoriality
2.
Heredity (Edinb) ; 118(4): 385-394, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28177325

ABSTRACT

Isolation by distance (IBD) is one of the main modes of differentiation in marine species, above all in species presenting low dispersal capacities. This study reports the genetic structuring in the tropical hydrozoan Lytocarpia brevirostris α (sensu Postaire et al, 2016b), a brooding species, from 13 populations in the Western Indian Ocean (WIO) and one from New Caledonia (Tropical Southwestern Pacific). At the local scale, populations rely on asexual propagation at short distance, which was not found at larger scales; identical genotypes were restricted to single populations. After the removal of repeated genotypes, all populations presented significant positive FIS values (between 0.094*** and 0.335***). Gene flow was extremely low at all spatial scales, between sites within islands (<10 km distance) and among islands (100 to>11 000 km distance), with significant pairwise FST values (between 0.012*** and 0.560***). A general pattern of IBD was found at the Indo-Pacific scale, but also within sampled ecoregions of the WIO province. Clustering analyses identified each sampled island as an independent population, whereas analysis of molecular variance indicated that population genetic differentiation was significant at small (within island) and intermediate (among islands within province) spatial scales. The high population differentiation might reflect the life cycle of this brooding hydrozoan, possibly preventing regular dispersal at distances more than a few kilometres and probably leading to high cryptic diversity, each island housing an independent evolutionary lineage.


Subject(s)
Gene Flow , Genetics, Population , Hydrozoa/genetics , Animals , Genotype , Indian Ocean , Islands , Microsatellite Repeats , Tropical Climate
3.
J Fish Biol ; 84(5): 1422-38, 2014 May.
Article in English | MEDLINE | ID: mdl-24773539

ABSTRACT

Temporal trends in growth of the rusty parrotfish Scarus ferrugineus were studied on a southern Red Sea fringing reef that experiences seasonal changes in environmental conditions and benthic algal resources. Length increment data from tagging and recapture were compared among periods and sexes and modelled using GROTAG, a von Bertalanffy growth model. The growth pattern of S. ferrugineus was highly seasonal with a maximum occurring between April and June and a minimum between December and March. Body condition followed the seasonal variation in growth, increasing from April to June and decreasing from December to March. The season of maximum growth coincided with high irradiation, temperature increases and peak abundance of the primary food source, the epilithic algal community. There was a decline in growth rate during summer (July to October) associated with a combination of extreme temperatures and lowered food availability. There were strong sexual size dimorphism (SSD) and life-history traits. Terminal-phase (TP) males achieved larger asymptotic lengths than initial-phase individuals (IP) (L(∞) 34·55 v. 25·12 cm) with growth coefficients (K) of 0·26 and 0·38. The TPs were growing four times as fast as IPs of similar size. Three individuals changed from IP to TP while at liberty and grew eight times faster than IPs of similar size, suggesting that sex change in S. ferrugineus is accompanied by a surge in growth rate. The SSD in S. ferrugineus thus coincided with fast growth that started during sex change and continued into the TP. Faster growth during sex change suggests that the cost associated with sex change is limited.


Subject(s)
Environment , Perciformes/growth & development , Seasons , Animals , Body Size , Female , Male , Models, Biological , Sex Characteristics
4.
Nature ; 405(6782): 65-9, 2000 May 04.
Article in English | MEDLINE | ID: mdl-10811218

ABSTRACT

The geographical origin of modern humans is the subject of ongoing scientific debate. The 'multiregional evolution' hypothesis argues that modern humans evolved semi-independently in Europe, Asia and Africa between 100,000 and 40,000 years ago, whereas the 'out of Africa' hypothesis contends that modern humans evolved in Africa between 200 and 100 kyr ago, migrating to Eurasia at some later time. Direct palaeontological, archaeological and biological evidence is necessary to resolve this debate. Here we report the discovery of early Middle Stone Age artefacts in an emerged reef terrace on the Red Sea coast of Eritrea, which we date to the last interglacial (about 125 kyr ago) using U-Th mass spectrometry techniques on fossil corals. The geological setting of these artefacts shows that early humans occupied coastal areas and exploited near-shore marine food resources in East Africa by this time. Together with similar, tentatively dated discoveries from South Africa this is the earliest well-dated evidence for human adaptation to a coastal marine environment, heralding an expansion in the range and complexity of human behaviour from one end of Africa to the other. This new, wide-spread adaptive strategy may, in part, signal the onset of modern human behaviour, which supports an African origin for modern humans by 125 kyr ago.


Subject(s)
Biological Evolution , Hominidae , Adaptation, Physiological , Animals , Archaeology , Cnidaria , Eritrea , Fossils , Humans , Indian Ocean
SELECTION OF CITATIONS
SEARCH DETAIL