Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 13(2): 267-279, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28127947

ABSTRACT

A SETAC Pellston Workshop® "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17ß-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available. Integr Environ Assess Manag 2017;13:267-279. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Endocrine Disruptors/analysis , Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Consensus Development Conferences as Topic , Ecotoxicology , Endocrine Disruptors/standards , Endocrine Disruptors/toxicity , Environmental Pollutants/standards , Environmental Pollutants/toxicity , Risk Assessment
2.
Integr Environ Assess Manag ; 13(2): 293-301, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27862884

ABSTRACT

Endocrine-disrupting substances (EDS) may have certain biological effects including delayed effects, multigenerational effects, and may display nonmonotonic dose-response (NMDR) relationships that require careful consideration when determining environmental hazards. Endocrine disrupting substances can have specific and profound effects when exposure occurs during sensitive windows of the life cycle (development, reproduction). This creates the potential for delayed effects that manifest when exposure has ceased, possibly in a different life stage. This potential underscores the need for testing in appropriate (sensitive) life stages and full life cycle designs. Such tests are available in the Organisation for Economic Co-operation and Development (OECD) tool box and should be used to derive endpoints that can be considered protective of all life stages. Similarly, the potential for effects to be manifest in subsequent generations (multigenerational effects) has also been raised as a potential issue in the derivation of appropriate endpoints for EDS. However, multigenerational studies showing increasing sensitivity of successive generations are uncommon. Indeed this is reflected in the design of new higher tier tests to assess endocrine active substances (EAS) that move to extended one-generation designs and away from multi-generational studies. The occurrence of NMDRs is also considered a limiting factor for reliable risk assessment of EDS. Evidence to date indicates NMDRs are more prevalent in in vitro and mechanistic data, not often translating to adverse apical endpoints that would be used in risk assessment. A series of steps to evaluate NMDRs in the context of endocrine hazard and risk assessment procedures is presented. If careful consideration of delayed, multigenerational effects and NMDRs is made, it is feasible to assess environmental endocrine hazards and derive robust apical endpoints for risk assessment procedures ensuring a high level of environmental protection. Integr Environ Assess Manag 2017;13:293-301. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Endocrine Disruptors , Environmental Monitoring/methods , Environmental Pollutants , Ecotoxicology , Risk Assessment/methods
3.
Pest Manag Sci ; 66(10): 1075-81, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20540073

ABSTRACT

BACKGROUND: Chlorantraniliprole is a novel anthranilic diamide insecticide registered for use in vegetables, fruits, grains and turf against a variety of insect pests. The objective of this article is to summarize results of acute toxicity testing of chlorantraniliprole on seven species of parasitic wasps with wide geographic distribution and relevance to different crops and integrated pest management (IPM) programmes. RESULTS: Tier-1, worst-case laboratory studies evaluated wasp survival and reproduction following different exposure concentrations and scenarios to chlorantraniliprole (i.e. fresh-dried spray deposits on glass plates, direct contact, ingestion, egg card, dipped leaf residue bioassays, sprayed mummies). No statistically significant effects on adult survival, percentage parasitism or emergence were observed following exposures to chlorantraniliprole compared with controls. CONCLUSION: Chlorantraniliprole was harmless to the parasitoid wasp species tested according to IOBC classification criteria (<30% effects) and may be a useful tool in IPM programmes.


Subject(s)
Insect Control/methods , Insecticides/pharmacology , Wasps/drug effects , ortho-Aminobenzoates/pharmacology , Animals , Malus/parasitology , Plant Diseases/parasitology , Wasps/physiology
4.
Ecol Appl ; 3(2): 256-261, 1993 May.
Article in English | MEDLINE | ID: mdl-27759327

ABSTRACT

European Starlings (Sturnus vulgaris) are often pests in commercial fruit crops in North America and Europe. Because starlings slack the digestive enzyme sucrase and cannot digest sucrose, they may develop an aversion to high-sucrose fruits. In water-tube drinking trials, we tested captive starlings with aqueous solutions of 15% (mass/volume) mixed sugars to identify the level of sucrose required to develop a conditioned feeding aversion when digestible sugars are present. In one-tube tests, starlings decreased intake of 11.25 and 15% sucrose solutions relative to their pretest intake of a 15% glucose-fructose mixture. In two-tube tests with sucrose solutions paired against a digestible glucose-fructose solution, starlings decreased preferences for the sucrose solutions as sucrose concentrations increased. These data suggest that the presence of digestible nutrients mitigates the effect of sucrose in sucrase-deficient birds and that a fruit cultivar would require @> 11.25% sucrose to repel starlings.

SELECTION OF CITATIONS
SEARCH DETAIL
...