Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 104(13): 136102, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481896

ABSTRACT

The structure of the commensurate (23x23) phase of graphene on Ru(0001) has been analyzed by quantitative low-energy electron diffraction (LEED)-I(V) analysis and density-functional theory calculations. The I(V) analysis uses Fourier components as fitting parameters to determine the vertical corrugation and the lateral relaxation of graphene and the top Ru layers. Graphene is shown to be strongly corrugated by 1.5 A with a minimum C-Ru distance of 2.1 A. Additionally, lateral displacements of C atoms and a significant buckling in the underlying Ru layers are observed, indicative for strong local C-Ru interactions.

2.
Phys Rev Lett ; 101(12): 126102, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18851393

ABSTRACT

The structure of a single layer of graphene on Ru(0001) has been studied using surface x-ray diffraction. A surprising superstructure containing 1250 carbon atoms has been determined, whereby 25 x 25 graphene unit cells lie on 23 x 23 unit cells of Ru. Each supercell contains 2 x 2 crystallographically inequivalent subcells caused by corrugation. Strong intensity oscillations in the superstructure rods demonstrate that the Ru substrate is also significantly corrugated down to several monolayers and that the bonding between graphene and Ru is strong and cannot be caused by van der Waals bonds. Charge transfer from the Ru substrate to the graphene expands and weakens the C-C bonds, which helps accommodate the in-plane tensile stress. The elucidation of this superstructure provides important information in the potential application of graphene as a template for nanocluster arrays.

3.
Glia ; 19(3): 199-212, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9063727

ABSTRACT

We have analysed the expression of glycosylphosphatidylinositol (GPI)-anchored proteins by oligodendrocyte-lineage cells. Biosynthetic labeling of mouse oligodendroglial primary cultures and an oligodendroglial precursor cell line demonstrated that these cells synthesise a variety of different GPI-anchored proteins. GPI-anchored proteins were isolated as a bulk preparation from the precursor cell line, and the individual proteins separated by 2D gel electrophoresis and analysed by microsequencing after tryptic digestion of the separated components. One of the most prominent GPI-anchored proteins synthesised by the cell line was identified as the cell adhesion molecule F3, previously thought to be exclusively expressed by neurons. Western blotting and immunoprecipitation with several polyclonal sera confirmed the expression of F3 by oligodendrocyte-lineage cells and demonstrated the presence of F3 in myelin. Double staining with a panel of oligodendrocyte-specific antibodies and anti-F3 antibodies of cerebellar cultures, as well as oligodendrocytes isolated by panning, showed a colocalization of F3 with oligodendrocyte markers. Oligodendrocyte F3 is shown to be susceptible to phosphatidylinositol-phospholipase C (PI-PLC) cleavage, similar to neuronal F3. Northern blots demonstrated that the oligodendroglial F3 mRNA is the same size as the neuronal message; however, no F3 mRNA could be detected in cortical astrocytes and an astrocytic cell line. Thus, in addition to the expression by neurons, the cell-type specificity of F3 expression must be extended to oligodendroglial cells, underscoring the importance of this Ig superfamily member in the nervous system.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Oligodendroglia/metabolism , Animals , Antibodies, Monoclonal , Blotting, Northern , Blotting, Western , Cell Lineage , Cells, Cultured , Contactins , Glycosylphosphatidylinositols/metabolism , Mice , Myelin Proteins/metabolism , Oligodendroglia/cytology , Precipitin Tests , Protein Biosynthesis , Proteins/isolation & purification , Rabbits
4.
Phys Rev Lett ; 71(15): 2481-2484, 1993 Oct 11.
Article in English | MEDLINE | ID: mdl-10054691
SELECTION OF CITATIONS
SEARCH DETAIL
...