Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Am J Hematol ; 99(7): 1407-1410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38622808

ABSTRACT

We investigated highlanders, permanently living at an altitude of 5100 m and compared Chronic Mountain Sickness (CMS) patients with control volunteers. While we found differences in systemic parameters such as blood oxygen content, hematocrit, hemoglobin concentration, and blood viscosity, the mechanical and rheological properties of single red blood cells did not differ between the two investigated groups.


Subject(s)
Altitude Sickness , Erythrocytes , Humans , Altitude Sickness/blood , Male , Adult , Chronic Disease , Female , Hematocrit , Middle Aged , Blood Viscosity , Hemoglobins/analysis , Altitude , Erythrocyte Transfusion , Oxygen/blood
2.
Exp Physiol ; 109(6): 899-914, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554124

ABSTRACT

Chronic mountain sickness is a maladaptive syndrome that affects individuals living permanently at high altitude and is characterized primarily by excessive erythrocytosis (EE). Recent results concerning the impact of EE in Andean highlanders on clotting and the possible promotion of hypercoagulability, which can lead to thrombosis, were contradictory. We assessed the coagulation profiles of Andeans highlanders with and without excessive erythrocytosis (EE+ and EE-). Blood samples were collected from 30 EE+ and 15 EE- in La Rinconada (Peru, 5100-5300 m a.s.l.), with special attention given to the sampling pre-analytical variables. Rotational thromboelastometry tests were performed at both native and normalized (40%) haematocrit using autologous platelet-poor plasma. Thrombin generation, dosages of clotting factors and inhibitors were measured in plasma samples. Data were compared between groups and with measurements performed at native haematocrit in 10 lowlanders (LL) at sea level. At native haematocrit, in all rotational thromboelastometry assays, EE+ exhibited hypocoagulable profiles (prolonged clotting time and weaker clot strength) compared with EE- and LL (all P < 0.01). At normalized haematocrit, clotting times were normalized in most individuals. Conversely, maximal clot firmness was normalized only in FIBTEM and not in EXTEM/INTEM assays, suggesting abnormal platelet activity. Thrombin generation, levels of plasma clotting factors and inhibitors, and standard coagulation assays were mostly normal in all groups. No highlanders reported a history of venous thromboembolism based on the dedicated survey. Collectively, these results indicate that EE+ do not present a hypercoagulable profile potentially favouring thrombosis.


Subject(s)
Altitude , Blood Coagulation , Polycythemia , Thrombelastography , Thrombophilia , Humans , Polycythemia/blood , Blood Coagulation/physiology , Adult , Thrombophilia/blood , Male , Thrombelastography/methods , Female , Hematocrit/methods , Peru , Middle Aged , Altitude Sickness/blood , Altitude Sickness/physiopathology , Thrombin/metabolism
3.
Am J Physiol Heart Circ Physiol ; 326(4): H923-H928, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38334969

ABSTRACT

It is known that electrical muscle stimulation (EMS) can enhance physical function, but its impact on cognition and cerebral hemodynamics is not well understood. Thus, the purpose of this study was to investigate the effects of one EMS session on cerebrovascular function and cognitive performance. The 17 recruited young healthy participants undertook a 25-min session of EMS and a resting control session (Ctrl group) in a random order. Cerebral blood flow velocity (CBFv) in the middle and posterior cerebral arteries (right MCAv and left PCAv, respectively), cerebral oxygenation, cardiac output, and heart rate were measured throughout the sessions, whereas cognitive function was assessed before and after each experimental condition. MCAv, cardiac output, heart rate, and cerebral oxygenation were increased throughout the EMS session, whereas PCAv remained unchanged. In addition, EMS led to improved scores at the Rey auditory verbal learning test-part B and congruent Stroop task versus Ctrl. The present study demonstrates that a single session of EMS may improve cognitive performance and concomitantly increase CBFv and cerebral oxygenation. Therefore, EMS appears to be a valuable surrogate for voluntary exercise and could therefore be advantageously used in populations with severe physical limitations who would not be able to perform physical exercise otherwise.NEW & NOTEWORTHY This study is the first to demonstrate that one session of EMS applied to the quadriceps increases cerebral blood flow velocity and cerebral oxygenation, which are pivotal factors for brain health. Thus, EMS has the potential to be used as an interesting option in rehabilitation to increase cerebral perfusion and defend if not improve cognitive function sustainably for people with severe physical limitations who would not be able to perform physical exercise voluntarily.


Subject(s)
Cerebrovascular Circulation , Hemodynamics , Humans , Brain/blood supply , Cerebrovascular Circulation/physiology , Cognition , Hemodynamics/physiology , Quadriceps Muscle
4.
J Physiol ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38146929

ABSTRACT

Exposure to chronic hypobaric hypoxia imposes a significant physiological burden to more than 80 million humans living above 2500 m throughout the world. Among them, 50 000 live in the world's highest city, La Rinconada, located at 5000-5300 m in southern Peru. Expedition 5300 is the first scientific and medical programme led in La Rinconada to investigate the physiological adaptations and altitude-related health issues in this unique population. Dwellers from La Rinconada have very high haemoglobin concentration (20.3 ± 2.4 g/dL; n = 57) and those with chronic mountain sickness (CMS) exhibit even higher concentrations (23.1 ± 1.7 g/dL; n = 150). These values are associated with large total haemoglobin mass and blood volume, without an associated iron deficit. These changes in intravascular volumes lead to a substantial increase in blood viscosity, which is even larger in CMS patients. Despite these large haematological changes, 24 h blood pressure monitoring is essentially normal in La Rinconada, but some results suggest impaired vascular reactivity. Echocardiography revealed large right heart dilatation and high pulmonary arterial pressure as well as left ventricle concentric remodelling and grade I diastolic dysfunction. These changes in heart dimension and function tend to be more severe in highlanders with CMS. Polygraphy evaluations revealed a large reduction in nocturnal pulse oxygen saturation (median SpO2  = 79%), which is even more severe in CMS patients who also tended to show a higher oxygen desaturation index. The population of La Rinconada offers a unique opportunity to investigate the human responses to chronic severe hypoxia, at an altitude that is probably close to the maximum altitude human beings can permanently tolerate without presenting major health issues.

10.
Eur J Prev Cardiol ; 29(17): 2154-2162, 2022 12 07.
Article in English | MEDLINE | ID: mdl-35929776

ABSTRACT

AIMS: A unique Andean population lives in the highest city of the world (La Rinconada, 5100 m, Peru) and frequently develops a maladaptive syndrome, termed chronic mountain sickness (CMS). Both extreme altitude and CMS are a challenge for the cardiovascular system. This study aims to evaluate cardiac remodelling and pulmonary circulation at rest and during exercise in healthy and CMS highlanders. METHODS AND RESULTS: Highlanders living permanently at 3800 m (n = 23) and 5100 m (n = 55) with (n = 38) or without CMS (n = 17) were compared with 18 healthy lowlanders. Rest and exercise echocardiography were performed to describe cardiac remodelling, pulmonary artery pressure (PAP), and pulmonary vascular resistance (PVR). Total blood volume (BV) and haemoglobin mass were determined in all people. With the increase in the altitude of residency, the right heart dilated with an impairment in right ventricle systolic function, while the left heart exhibited a progressive concentric remodelling with Grade I diastolic dysfunction but without systolic dysfunction. Those modifications were greater in moderate-severe CMS patients. The mean PAP was higher both at rest and during exercise in healthy highlanders at 5100 m. The moderate-severe CMS subjects had a higher PVR at rest and a larger increase in PAP during exercise. The right heart remodelling was correlated with PAP, total BV, and SpO2. CONCLUSION: Healthy dwellers at 5100 m exhibit both right heart dilatation and left ventricle concentric remodelling with diastolic dysfunction. Those modifications are even more pronounced in moderate-severe CMS subjects and could represent the limit of the heart's adaptability before progression to heart failure.


Subject(s)
Ventricular Remodeling , Humans , Peru/epidemiology
11.
Ann Med ; 54(1): 1884-1893, 2022 12.
Article in English | MEDLINE | ID: mdl-35786084

ABSTRACT

INTRODUCTION: Chronic mountain sickness (CMS) is a condition characterized by excessive erythrocytosis in response to chronic hypobaric hypoxia. CMS frequently triggers cardiorespiratory diseases such as pulmonary hypertension and right or left heart failure. Ambient hypoxia might be further amplified night-time by intermittent hypoxia related to sleep-disordered breathing (SDB) so that sleep disturbance may be an important feature of CMS. Our aim was to characterize in a cross-sectional study nocturnal hypoxaemia, SDB, blood pressure (BP), arterial stiffness and carotid intima-media thickness (CIMT) in highlanders living at extreme altitude. METHODS: Men aged 18 to 55 years were prospectively recruited. Home sleep apnoea test, questionnaires (short-form health survey; Montreal cognitive assessment; Pittsburgh Sleep Questionnaire Index and the Insomnia severity index), 24-h ambulatory BP monitoring, CIMT and arterial stiffness were evaluated in 3 groups: i) Andean lowlanders (sea-level); ii) highlanders living at 3,800 m and iii) highlanders living at 5,100 m. Analyses were conducted in sub-groups according to 1) CMS severity 2) healthy subjects living at the three different altitude. RESULTS: Ninety-two males were evaluated at their living altitudes. Among the 54 highlanders living at 5,100 m, subjects with CMS showed lower mean nocturnal oxygen saturation (SpO2), SpO2 nadir, lower pulse wave velocity and higher nocturnal BP variability than those with no-CMS. Lower nocturnal SpO2 nadir was associated with higher CMS severity (ß= -0.14, p=.009). Among the 55 healthy subjects, healthy highlanders at 5,100 m were characterized by lower scores on quality of life and sleep quality scales and lower mean SpO2 compared to lowlanders. CONCLUSIONS: Lower nocturnal SpO2 and higher nocturnal BP variability are associated with CMS severity in individuals living permanently at high altitude. The role of lower SpO2 and higher nocturnal BP variability in the cardiovascular progression of CMS and in the overall prognosis of the disease need to be evaluated in further studies.


Subject(s)
Altitude Sickness , Hypertension , Sleep Apnea Syndromes , Altitude Sickness/epidemiology , Blood Pressure , Carotid Intima-Media Thickness , Chronic Disease , Cross-Sectional Studies , Humans , Hypertension/complications , Hypoxia/complications , Male , Pulse Wave Analysis , Quality of Life , Sleep Apnea Syndromes/epidemiology
12.
Free Radic Biol Med ; 184: 99-113, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35398201

ABSTRACT

Chronic mountain sickness (CMS) is a high-altitude (HA) maladaptation syndrome characterised by elevated systemic oxidative-nitrosative stress (OXNOS) due to a free radical-mediated reduction in vascular nitric oxide (NO) bioavailability. To better define underlying mechanisms and vascular consequences, this study compared healthy male lowlanders (80 m, n = 10) against age/sex-matched highlanders born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 10) and without (CMS-, n = 10) CMS. Cephalic venous blood was assayed using electron paramagnetic resonance spectroscopy and reductive ozone-based chemiluminescence. Nutritional intake was assessed via dietary recall. Systemic vascular function and structure were assessed via flow-mediated dilatation, aortic pulse wave velocity and carotid intima-media thickness using duplex ultrasound and applanation tonometry. Basal systemic OXNOS was permanently elevated in highlanders (P = <0.001 vs. lowlanders) and further exaggerated in CMS+, reflected by increased hydroxyl radical spin adduct formation (P = <0.001 vs. CMS-) subsequent to liberation of free 'catalytic' iron consistent with a Fenton and/or nucleophilic addition mechanism(s). This was accompanied by elevated global protein carbonylation (P = 0.046 vs. CMS-) and corresponding reduction in plasma nitrite (P = <0.001 vs. lowlanders). Dietary intake of vitamins C and E, carotene, magnesium and retinol were lower in highlanders and especially deficient in CMS + due to reduced consumption of fruit and vegetables (P = <0.001 to 0.028 vs. lowlanders/CMS-). Systemic vascular function and structure were also impaired in highlanders (P = <0.001 to 0.040 vs. lowlanders) with more marked dysfunction observed in CMS+ (P = 0.035 to 0.043 vs. CMS-) in direct proportion to systemic OXNOS (r = -0.692 to 0.595, P = <0.001 to 0.045). Collectively, these findings suggest that lifelong exposure to iron-catalysed systemic OXNOS, compounded by a dietary deficiency of antioxidant micronutrients, likely contributes to the systemic vascular complications and increased morbidity/mortality in CMS+. TRIAL REGISTRY: ClinicalTrials.gov; No: NCT01182792; URL: www.clinicaltrials.gov.


Subject(s)
Altitude Sickness , Altitude , Altitude Sickness/metabolism , Carotid Intima-Media Thickness , Chronic Disease , Electron Spin Resonance Spectroscopy , Free Radicals , Humans , Iron , Male , Pulse Wave Analysis
13.
Eur J Appl Physiol ; 122(4): 889-902, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35103862

ABSTRACT

PURPOSE: Both prolonged exercise and acute high-altitude exposure are known to induce cardiac changes. We sought to describe the cardiac responses to speed climbing at high-altitude, including left ventricular (LV) performance assessment using the myocardial work index (MWI), a new index derived from 2D speckle tracking echocardiography (STE). METHODS: Eleven elite alpinists (9 males, age: 26 ± 4 years) were evaluated before and immediately after a speed ascent of the Mont-Blanc (4808 m) by echocardiography using conventional measurements as well as STE and MWI computation with derivate parameters as global work efficiency (GWE) or global wasted work (GWW). RESULTS: Athletes performed a long-duration (8 h 58 min ± 60 min) and intense (78 ± 4% of maximal heart rate) ascent under gradual hypoxic conditions (minimal SpO2 at 4808 m: 71 ± 4%). Hypoxic exercise-induced cardiac fatigue was observed post-ascent with a change in right ventricular (RV) and LV systolic function (RV fractional area change: - 20 ± 23%, p = 0.01; LV global longitudinal strain change: - 8 ± 9%, p = 0.02), as well as LV geometry and RV-LV interaction alterations with emergence of a D-shape septum in 5/11 (46%) participants associated with RV pressure overload (mean pulmonary arterial pressure change: + 55 ± 20%, p < 0.001). Both MWI and GWE were reduced post-ascent (- 21 ± 16%, p = 0.004 and - 4 ± 4%, p = 0.007, respectively). Relative decrease in MWI and GWE were inversely correlated with increase in GWW (r = - 0.86, p = 0.003 and r = -0.97, p < 0.001, respectively). CONCLUSIONS: Prolonged high-altitude speed climbing in elite climbers is associated with RV and LV function changes with a major interaction alteration. MWI, assessing the myocardial performance, could be a new tool for evaluating LV exercise-induced cardiac fatigue.


Subject(s)
Heart Ventricles , Ventricular Function, Left , Adult , Echocardiography , Heart Ventricles/diagnostic imaging , Humans , Hypoxia , Male , Systole , Ventricular Function, Left/physiology , Ventricular Function, Right/physiology , Young Adult
14.
Eur J Appl Physiol ; 122(3): 635-649, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34993575

ABSTRACT

PURPOSE: The combined effects of acute hypoxia and exercise on cognition remain to be clarified. We investigated the effect of speed climbing to high altitude on reactivity and inhibitory control in elite climbers. METHODS: Eleven elite climbers performed a speed ascent of the Mont-Blanc (4810 m) and were evaluated pre- (at 1000 m) and immediately post-ascent (at 3835 m). In both conditions, a Simon task was done at rest (single-task session, ST) and during a low-intensity exercise (dual-task session, DT). Prefrontal cortex (PFC) oxygenation and middle cerebral artery velocity (MCAv) were monitored using near-infrared spectroscopy and transcranial Doppler, respectively, during the cognitive task. Self-perceived mental fatigue and difficulty to perform the cognitive tests were estimated using a visual analog scale. Heart rate and pulse oxygenation (SpO2) were monitored during the speed ascent. RESULTS: Elite climbers performed an intense (~ 50% of the time ≥ 80% of maximal heart rate) and prolonged (8h58 ± 6 min) exercise in hypoxia (minimal SpO2 at 4810 m: 78 ± 4%). Reaction time and accuracy during the Simon task were similar pre- and post-ascent (374 ± 28 ms vs. 385 ± 39 ms and 6 ± 4% vs. 5 ± 4%, respectively; p > 0.05), despite a reported higher mental fatigue and difficulty to perform the Simon task post-ascent (all p < 0.05). The magnitude of the Simon effect was unaltered (p > 0.05), suggesting a preserved cognitive control post-ascent. Pattern of PFC oxygenation and MCAv differed between pre- and post-ascent as well as between ST and DT conditions. CONCLUSIONS: Cognitive control is not altered in elite climbers after a speed ascent to high-altitude despite substantial cerebral deoxygenation and fatigue perception.


Subject(s)
Altitude , Cognition/physiology , Mountaineering/physiology , Adult , Blood Flow Velocity , Cerebrovascular Circulation , Fatigue , Female , France , Heart Rate/physiology , Humans , Hypoxia , Male , Oxygen Consumption/physiology , Reaction Time/physiology , Spectroscopy, Near-Infrared , Task Performance and Analysis
15.
J Appl Physiol (1985) ; 132(2): 575-580, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35023761

ABSTRACT

High-altitude exposure results in a hyperventilatory-induced respiratory alkalosis followed by renal compensation (bicarbonaturia) to return arterial blood pH (pHa) toward sea-level values. However, acid-base balance has not been comprehensively examined in both lowlanders and indigenous populations-where the latter are thought to be fully adapted to high altitude. The purpose of this investigation was to compare acid-base balance between acclimatizing lowlanders and Andean and Sherpa highlanders at various altitudes (∼3,800, ∼4,300, and ∼5,000 m). We compiled data collected across five independent high-altitude expeditions and report the following novel findings: 1) at 3,800 m, Andeans (n = 7) had elevated pHa compared with Sherpas (n = 12; P < 0.01), but not to lowlanders (n = 16; 9 days acclimatized; P = 0.09); 2) at 4,300 m, lowlanders (n = 16; 21 days acclimatized) had elevated pHa compared with Andeans (n = 32) and Sherpas (n = 11; both P < 0.01), and Andeans had elevated pHa compared with Sherpas (P = 0.01); and 3) at 5,000 m, lowlanders (n = 16; 14 days acclimatized) had higher pHa compared with both Andeans (n = 66) and Sherpas (n = 18; P < 0.01, and P = 0.03, respectively), and Andean and Sherpa highlanders had similar blood pHa (P = 0.65). These novel data characterize acid-base balance acclimatization and adaptation to various altitudes in lowlanders and indigenous highlanders.NEW & NOTEWORTHY Lowlander, Andean, and Sherpa arterial blood data were combined across five independent high-altitude expeditions in the United States, Nepal, and Peru to assess acid-base status at ∼3,800, ∼4,300, and ∼5,000 m. The main finding was that Andean and Sherpa highlander populations have more acidic arterial blood, due to elevated arterial carbon dioxide and similar arterial bicarbonate compared with acclimatizing lowlanders at altitudes ≥4,300 m.


Subject(s)
Altitude Sickness , Expeditions , Acclimatization , Acid-Base Equilibrium , Altitude , Humans
17.
High Alt Med Biol ; 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34197184

ABSTRACT

Champigneulle, Benoit, Ivan Hancco, Richard Renan, Stéphane Doutreleau, Emeric Stauffer, Aurélien Pichon, Julien V. Brugniaux, Hélène Péré, Pierre Bouzat, David Veyer, and Samuel Verges. High-altitude environment and COVID-19: SARS-CoV-2 seropositivity in the highest city in the world. High Alt Med Biol. 22: 000-000, 2021. Background: A reduced coronavirus disease 2019 (COVID-19) diffusion has been suggested in high-altitude areas but remained questionable. Aims of this study were to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity as well as the risk factors associated in La Rinconada, the highest city in the world (5,100-5,300 m), a gold-mining town located in southeastern Peru where >50,000 dwellers live in precarious sanitary conditions. Materials and Methods: We performed a cross-sectional study during a 1-week period in October 2020, using point-of-care lateral flow serological assays allowing detection of antibodies directed against SARS-CoV-2 among voluntary dwellers in La Rinconada. Participants were also questioned about potential occupational and environmental risk factors of COVID-19 occurrence. Results: In a sample of 159 dwellers tested in La Rinconada, 48.4% [95% confidence interval, CI: 40.5-56.4] were seropositive for the SARS-CoV-2. Occurrence of at least one symptom compatible with the COVID-19 over the past 6 months remained the only significant factor associated with SARS-CoV-2 seropositivity (adjusted odds ratio: 3.27; [95% CI: 1.70-6.44]; p < 0.001). Conclusions: The high rate of SARS-CoV-2 seropositivity observed in this small sample of highlanders does not support a protective effect of high-altitude against the COVID-19 spread and demonstrates its large dissemination in vulnerable populations. Clinical Trial Registration number: NCT04604249.

18.
Respir Physiol Neurobiol ; 282: 103535, 2020 11.
Article in English | MEDLINE | ID: mdl-32871284

ABSTRACT

Little is known about hemostasis modifications induced by chronic hypoxic exposure in high-altitude residents, especially in those who develop excessive erythrocytosis (EE, i.e. hemoglobin concentration ≥ 21 g·dL-1 in male and ≥ 19 g·dL-1 in female). The aim of this preliminary study was to assess coagulation alterations in highlanders with or without EE using simple hemostatic tests such as bleeding (BT) and clotting (CT) times. Eighty-one male (43 ± 7 years), permanent residents from La Rinconada (Peru), the highest city in the world (5,100-5,300 m), were evaluated. Thirty-six subjects (44 %) presented with EE. EE subjects compared to non-EE subjects had lower BT (3.6 ± 1.2 vs. 7.0 ± 1.9 min, p < 0.001) and CT (11.7 ± 1.7 vs. 15.1 ± 2.3 min, p < 0.001). These results support the notion that highlanders with EE are in a state of hypercoagulability and call for further hemostasis investigations in this population using more detailed hemostatic methods.


Subject(s)
Altitude Sickness/blood , Altitude , Blood Coagulation/physiology , Hemostasis/physiology , Polycythemia/blood , Adult , Humans , Male , Middle Aged , Peru
19.
J Physiol ; 598(18): 4121-4130, 2020 09.
Article in English | MEDLINE | ID: mdl-32445208

ABSTRACT

KEY POINTS: Highlanders develop unique adaptative mechanisms to chronic hypoxic exposure, including substantial haemoglobin and haematocrit increases. However, a significant proportion of populations living permanently at high altitude develop maladaptive features known as chronic mountain sickness (CMS). This study aimed to assess the effects of permanent life at high altitude on clinical and haemorheological parameters (blood viscosity and red blood cell aggregation) and to compare clinical and haemorheological parameters of dwellers from the highest city in the world according to CMS severity. Blood viscosity increased with altitude, together with haemoglobin concentration and haematocrit. At 5100 m, highlanders with moderate-to-severe CMS had higher blood viscosity mainly at high shear rate and even at corrected haematocrit (40%), with a lower red blood cell aggregation. Blood viscosity may contribute to CMS symptomatology but the increased blood viscosity in CMS patients cannot solely be explained by the rise in haematocrit. ABSTRACT: Chronic mountain sickness (CMS) is a condition characterised by excessive erythrocytosis (EE). While EE is thought to increase blood viscosity and subsequently to trigger CMS symptoms, the exact relationship between blood viscosity and CMS symptoms remains incompletely understood. We assessed the effect of living at high altitude on haemoglobin, haematocrit and haemorheological parameters (blood viscosity and red blood cell aggregation), and investigated their relationship with CMS in highlanders living in the highest city in the world (La Rinconada, Peru, 5100 m). Ninety-three men participated in this study: 10 Caucasian lowlanders, 13 Andean highlanders living at 3800 m and 70 Andean highlanders living at 5100 m (35 asymptomatic, CMS score ≤5; 15 with mild CMS, CMS score between 6 and 10; 20 with moderate-to-severe CMS, CMS score >10). Blood viscosity was measured at native and corrected haematocrit (40%). Haemoglobin concentration and haematocrit increased with the altitude of residency. Blood viscosity also increased with altitude (at 45 s-1 : 6.7 ± 0.9 mPa s at sea level, 14.0 ± 2.0 mPa s at 3800 m and 27.1 ± 8.8 mPa s at 5100 m; P < 0.001). At 5100 m, blood viscosity at corrected haematocrit was higher in highlanders with moderate-to-severe CMS (at 45 s-1 : 18.9 ± 10.7 mPa s) than in highlanders without CMS (10.2 ± 5.9 mPa s) or with mild CMS (12.1 ± 6.1 mPa s) (P < 0.05). In conclusion, blood viscosity may contribute to CMS symptomatology but the increased blood viscosity in CMS patients cannot solely be explained by the rise in haematocrit.


Subject(s)
Altitude Sickness , Blood Viscosity , Adaptation, Physiological , Altitude , Chronic Disease , Humans , Male , Peru
20.
Neuroscience ; 427: 58-63, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31866559

ABSTRACT

Females are more prone to cognitive decline, stroke and neurodegenerative disease, possibly due to more marked reductions in cerebral blood flow and cerebrovascular reactivity to CO2 (CVRCO2HYPER) in later life. To what extent regular exercise confers selective neuroprotection in females remains unestablished. To examine this, 73 adults were prospectively assigned to 1 of 4 groups based on sex (male, ♂ vs. female, ♀) and physical activity status (trained, ≥150 min of moderate-vigorous intensity aerobic exercise/week; n = 18♂ vs. 18♀ vs. untrained, no formal exercise; n = 18♂ vs. 19♀). Middle cerebral artery velocity (MCAv, transcranial Doppler ultrasound), mean arterial pressure (MAP, finger photoplethysmography) and end-tidal CO2 (capnography) were assessed at rest during normocapnea and hypercapnea (5% CO2) enabling CVRCO2HYPER to be assessed. Cerebrovascular resistance/conductance indices (CVRi/CVCi) were calculated as MAP/MCAv and MCAv/MAP. Maximal oxygen uptake (VO2MAX) was determined during incremental semi-recumbent cycling ergometry to volitional exhaustion. Despite having a lower VO2MAX, females were characterized by selective elevations in MCAv, CVRCO2HYPER and lower CVRi (P < 0.05), but the training responses were similar across sexes. Linear relationships were observed between VO2MAX and CVRCO2HYPER (pooled untrained and trained data; ♂ r = 0.70, ♀ r = 0.51; both P < 0.05) with a consistent elevation in the latter equivalent to ∼1.50%.mmHg-1 compared to males across the spectrum of cardiorespiratory fitness. These findings indicate that despite having comparatively lower levels of cardiorespiratory fitness, the neuroprotective benefits of regular exercise translate into females and may help combat cerebrovascular disease in later life.


Subject(s)
Cardiorespiratory Fitness/physiology , Exercise , Neuroprotection , Adult , Arterial Pressure , Cerebrovascular Circulation/physiology , Female , Humans , Male , Middle Cerebral Artery/physiology , Physical Fitness/physiology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...