Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(52): e2207024119, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36534802

ABSTRACT

Global warming accelerates melting of glaciers and increases the supply of meltwater and associated inorganic particles, nutrients, and organic matter to adjacent coastal seas, but the ecosystem impact is poorly resolved and quantified. When meltwater is delivered by glacial rivers, the potential impact could be a reduction in light and nutrient availability for primary producers while supplying allochthonous carbon for heterotrophic processes, thereby tipping the net community metabolism toward heterotrophy. To test this hypothesis, we determined physical and biogeochemical parameters along a 110-km fjord transect in NE Greenland fjord, impacted by glacial meltwater from the Greenland Ice Sheet. The meltwater is delivered from glacier-fed river outlets in the inner parts of the fjord, creating a gradient in salinity and turbidity. The planktonic primary production was low, 20-45 mg C m-2 d-1, in the more turbid inner half of the fjord, increasing 10-fold to around 350 mg C m-2 d-1 in the shelf waters outside the fjord. Plankton community metabolism was measured at three stations, which displayed a transition from net heterotrophy in the inner fjord to net autotrophy in the coastal shelf waters. Respiration was significantly correlated to turbidity, with a 10-fold increase in the inner turbid part of the fjord. We estimated the changes in meltwater input and sea ice coverage in the area for the last 60 y. The long-term trend and the observed effects demonstrated the importance of freshwater runoff as a key driver of coastal ecosystem change in the Arctic with potential negative consequences for coastal productivity.


Subject(s)
Ecosystem , Estuaries , Heterotrophic Processes , Greenland , Autotrophic Processes , Plankton , Ice Cover
2.
Metabolites ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922209

ABSTRACT

Greenhouse gas emissions are a global problem facing the dairy/beef industry. Novel feed additives consisting of seaweeds and hemp containing bioactive compounds are theorized to reduce enteric methane emissions. In this study we aimed to investigate the metabolic profiles of brown, red and green seaweeds and hemp using gas chromatography and liquid chromatography mass spectrometry. We used targeted and untargeted approaches, quantifying known halomethanes and phenolics, as well as identifying potentially novel bioactive compounds with anti-methanogenic properties. The main findings were: (a) Asparagopsis taxiformis contained halomethanes, with high concentrations of bromoform (4200 µg/g DW), six volatile halocarbons were tentatively identified; (b) no halomethanes were detected in the other studied seaweeds nor in hemp; (c) high concentrations of lignans were measured in hemp; (d) a high numbers of sulfated phenolic acids and unidentified sulfuric acid-containing compounds were detected in all seaweeds; (e) flavonoid glucosides and glucuronides were mainly identified in hemp; and (f) the condensed tannin gallocatechin was tentatively identified in Fucus sp. Using the combined metabolomics approach, an overview and in-depth information on secondary metabolites were provided. Halomethanes of Asparagopsis sp. have already been shown to be anti-methanogenic; however, metabolic profiles of seaweeds such as Dictyota and Sargassum have also been shown to contain compounds that may have anti-methanogenic potential.

3.
Sci Rep ; 8(1): 1112, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348650

ABSTRACT

Glacial vicariance is regarded as one of the most prevalent drivers of phylogeographic structure and speciation among high-latitude organisms, but direct links between ice advances and range fragmentation have been more difficult to establish in marine than in terrestrial systems. Here we investigate the evolution of largely disjunct (and potentially reproductively isolated) phylogeographic lineages within the amphi-boreal kelp Saccharina latissima s. l. Using molecular data (COI, microsatellites) we confirm that S. latissima comprises also the NE Pacific S. cichorioides complex and is composed of divergent lineages with limited range overlap and genetic admixture. Only a few genetic hybrids were detected throughout a Canadian Arctic/NW Greenland contact zone. The degree of genetic differentiation and sympatric isolation of phylogroups suggest that S. latissima s. l. represents a complex of incipient species. Phylogroup distributions compared with paleo-environmental reconstructions of the cryosphere further suggest that diversification within S. latissima results from chronic glacial isolation in disjunct persistence areas intercalated with ephemeral interglacial poleward expansions and admixture at high-latitude (Arctic) contact zones. This study thus supports a role for glaciations not just in redistributing pre-existing marine lineages but also as a speciation pump across multi-glacial cycles for marine organisms otherwise exhibiting cosmopolite amphi-boreal distributions.


Subject(s)
Biodiversity , Ice Cover , Kelp/classification , Kelp/genetics , Phylogeny , Phylogeography , DNA, Mitochondrial , Ecosystem , Electron Transport Complex IV/genetics , Environment , Genetic Variation , Microsatellite Repeats
4.
J Appl Phycol ; 29(6): 3121-3137, 2017.
Article in English | MEDLINE | ID: mdl-29213185

ABSTRACT

Fucoidans are sulphated fucose-rich polysaccharides predominantly found in the cell walls of brown algae. The bioactive properties of fucoidans attract increasing interest from the medico-pharmaceutical industries and may drive an increase in demand of brown algae biomass. In nature, the biochemical composition of brown algae displays a seasonal fluctuation driven by environmental factors and endogenous rhythms. To cultivate and harvest kelps with high yields of fucoidans, knowledge is needed on seasonal variation and impact of environmental conditions on the fucoidan content of brown algae. The relations between the fucoidan content and key environmental factors (irradiance, nutrient availability, salinity and exposure) were examined by sampling natural populations of the common North Atlantic kelps, Saccharina latissima and Laminaria digitata, over a full year at Hanstholm in the North Sea and Aarhus in the Kattegat. In addition, laboratory experiments were carried out isolating the effects of the single factors. The results demonstrated that (1) seasonal variation alters the fucoidan content by a factor of 2-2.6; (2) interspecific differences exist in the concentrations of crude fucoidan (% of dry matter): L. digitata (11%) > S. latissima (6%); and (3) the effects of single environmental factors were not consistent between species or between different conspecific populations. The ambiguous response to single environmental factors complicates prospective directions for manipulating an increased content of fucoidan in a cultivation scenario and emphasizes the need for knowledge on performance of local kelp ecotypes.

5.
New Phytol ; 216(4): 967-975, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28800196

ABSTRACT

Macroalgae (seaweeds) are the subject of increasing interest for their potential as a source of valuable, sustainable biomass in the food, feed, chemical and pharmaceutical industries. Compared with microalgae, the pace of knowledge acquisition in seaweeds is slower despite the availability of whole-genome sequences and model organisms for the major seaweed groups. This is partly a consequence of specific hurdles related to the large size of these organisms and their slow growth. As a result, this basic scientific field is falling behind, despite the societal and economic importance of these organisms. Here, we argue that sustainable management of seaweed aquaculture requires fundamental understanding of the underlying biological mechanisms controlling macroalgal life cycles - from the production of germ cells to the growth and fertility of the adult organisms - using diverse approaches requiring a broad range of technological tools. This Viewpoint highlights several examples of basic research on macroalgal developmental biology that could enable the step-changes which are required to adequately meet the demands of the aquaculture sector.


Subject(s)
Aquaculture , Seaweed/growth & development , Biomass , Conservation of Natural Resources , Life Cycle Stages
6.
Sci Total Environ ; 563-564: 513-29, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27152993

ABSTRACT

The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150Mg/km(2) in Danish waters in 2014 was applied to a cultivation scenario of 208km(2). The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29kgNeq. and 16.58kgPO4(3-)eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and >100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and >100% of the target).


Subject(s)
Eutrophication , Fertilizers/analysis , Seaweed/metabolism , Waste Management/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Denmark , Nitrogen/analysis , Phosphorus/analysis
7.
J Phycol ; 52(4): 523-31, 2016 08.
Article in English | MEDLINE | ID: mdl-27151230

ABSTRACT

The North Sea-Baltic Sea transition zone constitutes a boundary area for the kelp species Saccharina latissima due to a strong salinity gradient operating in the area. Furthermore, the existence of S. latissima there, along Danish waters, is fairly patchy as hard bottom is scarce. In this study, patterns of genetic diversity of S. latissima populations were evaluated along the salinity gradient area of Danish waters (here designated brackish) and were compared to reference sites (here designated marine) outside the gradient area, using microsatellite markers. The results showed that the S. latissima populations were structured into two clusters corresponding to brackish versus marine sites, and that gene flow was reduced both between clusters and between populations within clusters. In addition, results provided empirical evidence that marginal populations of S. latissima in the salinity gradient area exhibited a distinct genetic structure when compared to marine ones. Brackish populations were less diverse, more related, and showed increased differentiation over distance compared to marine populations. The isolation of the brackish S. latissima populations within the salinity gradient area of Danish waters in conjunction with their general low genetic diversity makes these populations vulnerable to ongoing environmental and climate change, predicted to result in declining salinity in the Baltic Sea area that may alter the future distribution and performance of S. latissima in the area.


Subject(s)
Genetic Variation , Kelp/genetics , Salinity , Seawater/analysis , Gene Flow , North Sea , Oceans and Seas
8.
Bioresour Technol ; 146: 426-435, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23954716

ABSTRACT

Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 µM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 µM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water.


Subject(s)
Nitrogen/chemistry , Seaweed/metabolism , Sewage , Ulva/metabolism , Water Pollutants, Chemical/analysis , Water Purification/methods , Anaerobiosis , Biodegradation, Environmental , Biofuels , Biomass , Metals , Metals, Heavy , Nitrates/chemistry , Wastewater
9.
Bioresour Technol ; 102(3): 2595-604, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21044839

ABSTRACT

The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45T (TS) ha(-1) y(-1). Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH(4) g(-1) VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy.


Subject(s)
Biofuels/analysis , Biomass , Conservation of Energy Resources/methods , Energy Transfer/physiology , Methane/metabolism , Ulva/chemistry , Ulva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...