Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Green Chem ; 26(13): 7739-7751, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38957875

ABSTRACT

Humins, (side-)products of the acid-catalysed dehydration of carbohydrates, will be produced in substantial quantities with the development of industrial biorefining processes. Most structural knowledge about such humins is based on synthetic model humins prepared at lab-scale from typical carbohydrate(-derived) compounds. Here, we report the first extensive characterisation study of an industrial humin. The soluble humin was generated from pilot plant-scale methanolic cyclodehydration of D-fructose to 5-methoxymethyl-2-furfural (MMF), as part of the Avantium YXY® process to produce FDCA. Purification of the industrial humin followed by fractionation allowed isolation of a water-insoluble, high molecular weight fraction (WIPIH) and a water-soluble, low-to-middle molecular weight soluble fraction (WES). Characterisation by elemental analysis, thermogravimetry, IR and NMR spectroscopy and size exclusion chromatography provided a detailed picture of the humin structure in both fractions. Aided by a comprehensive NMR spectral library of furanic model compounds, we identified the main furanic building blocks and inter-unit linkages and propose a structure for this industrial humin sample. The WIPIH and WES fractions were found to be composed of furanic rings interconnected by short aliphatic chains containing a wide range of functionalities including alcohols, ethers, carboxylic acids, esters, aldehydes and ketones. The low level of crosslinking and high functional group content of the industrial humin differ from the more extensively studied, (highly over-)condensed synthetic model humins, towards which they can be considered intermediates. The structural and compositional insights into the nature of an actual industrial humin open up a broad spectrum of valorisation opportunities.

2.
ACS Sustain Chem Eng ; 12(23): 8968-8977, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38872958

ABSTRACT

Recent scientific advances in the valorization of lignin, through e.g., (partial-)catalytic depolymerization, require equally state-of-the-art approaches for the analysis of the obtained depolymerized lignins (DLs) or lignin bio-oils. The use of chemometrics in combination with infrared (IR) spectroscopy is one avenue to provide rapid access to pertinent lignin parameters, such as molecular weight (MW) characteristics, which typically require analysis via time-consuming size-exclusion methods, or diffusion-ordered NMR spectroscopy. Importantly, MW serves as a marker for the degree of depolymerization (or recondensation) that the lignin has undergone, and thus probing this parameter is essential for the optimization of depolymerization conditions to achieve DLs with desired properties. Here, we show that our ATR-IR-based chemometrics approach used previously for technical lignin analysis can be extended to analyze these more processed, lignin-derived samples as well. Remarkably, also at this lower end of the MW scale, the use of partial least-squares (PLS) regression models well-predicted the MW parameters for a sample set of 57 depolymerized lignins, with relative errors of 9.9-11.2%. Furthermore, principal component analysis (PCA) showed good correspondence with features in the regression vectors for each of the biomass classes (hardwood, herbaceous/grass, and softwood) obtained from PLS-discriminant analysis (PLS-DA). Overall, we show that the IR spectra of DLs are still amenable to chemometric analysis and specifically to rapid, predictive characterization of their MW, circumventing the time-consuming, tedious, and not generally accessible methods typically employed.

3.
ChemSusChem ; 17(9): e202301464, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38194292

ABSTRACT

To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.

4.
Green Chem ; 25(15): 6051-6056, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-38013986

ABSTRACT

To fully exploit kraft lignin's potential in material applications, we need to achieve tight control over those key physicochemical lignin parameters that ultimately determine, and serve as proxy for, the properties of lignin-derived materials. Here, we show that fractionation combined with systematic (incremental) modification provides a powerful strategy to expand and controllably tailor lignin property space. In particular, the glass transition temperature (Tg) of a typical kraft lignin could be tuned over a remarkable and unprecedented 213 °C. Remarkably, for all fractions the Tg proved to be highly linearly correlated with the degree of derivatisation by allylation, offering such tight control over the Tg of the lignin and ultimately the ability to 'dial-in' this key property. Importantly, such control over this proxy parameter indeed translated well to lignin-based thiol-ene thermosetting films, whose Tgs thus covered a range from 2-124 °C. This proof of concept suggests this approach to be a powerful and generalisable one, allowing a biorefinery or downstream operation to consciously and reliably tailor lignins to predictable specifications which fit their desired application.

5.
Green Chem ; 25(23): 9689-9694, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38028818

ABSTRACT

Diels-Alder (DA) cycloaddition of furanics is emerging as a key transformation in circular chemistry, providing access to highly versatile, biobased platform molecules. Further development of this technology into viable industrial applications faces major challenges, a notorious one being the lack of reactivity of the most readily available furans, i.e. the furfural derivatives. Herein we describe the remarkably-facile intramolecular DA reaction of allyl acetals of different furfurals to efficiently afford formal DA adducts with the atypical, unreactive dienophile allyl alcohol. Our methodology gives access to unprecedented oxanorbornene derivatives in high chemo-, regio- and stereoselectivity, which can be readily diversified into valuable products. This offers the potential of scalable production of renewable chemical building blocks from cheap, bioderived platform molecules.

6.
ACS Sustain Chem Eng ; 11(18): 7193-7202, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37180028

ABSTRACT

Polyurethane (PU) coatings with high lignin content and tunable properties were made using a combination of fractionation and partial catalytic depolymerization as a novel strategy to tailor lignin molar mass and hydroxyl group reactivity, the key parameters for use in PU coatings. Acetone organosolv lignin obtained from pilot-scale fractionation of beech wood chips was processed at the kilogram scale to produce lignin fractions with specific molar mass ranges (Mw 1000-6000 g/mol) and reduced polydispersity. Aliphatic hydroxyl groups were distributed relatively evenly over the lignin fractions, allowing detailed study of the correlation between lignin molar mass and hydroxyl group reactivity using an aliphatic polyisocyanate linker. As expected, the high molar mass fractions exhibited low cross-linking reactivity, yielding rigid coatings with a high glass transition temperature (Tg). The lower Mw fractions showed increased lignin reactivity, extent of cross-linking, and gave coatings with enhanced flexibility and lower Tg. Lignin properties could be further tailored by lignin partial depolymerization by reduction (PDR) of the beech wood lignin and its high molar mass fractions; excellent translation of the PDR process was observed from laboratory to the pilot scale necessary for coating applications in prospective industrial scenarios. Lignin depolymerization significantly improved lignin reactivity, and coatings produced from PDR lignin showed the lowest Tg values and highest coating flexibility. Overall, this study provides a powerful strategy for the production of PU coatings with tailored properties and high (>90%) biomass content, paving the path to the development of fully green and circular PU materials.

7.
ChemSusChem ; 15(18): e202201139, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35833422

ABSTRACT

A hydrazine-mediated approach towards renewable aromatics production via Diels-Alder aromatization of readily available, biobased furfurals was explored as alterative to the more classical approaches that rely on reactive but uneconomical reduced dienes (e. g., 2,5-dimethylfuran). To enable cycloaddition chemistry with these otherwise unreactive formyl furans, substrate activation by N,N-dimethyl hydrazone formation was investigated. The choice of the reaction partner was key to the success of the transformation, and in this respect acrylic acid showed the most promising results in the synthesis of aromatics. This strategy allowed for selectivities up to 60 % for a complex transformation consisting of Diels-Alder cycloaddition, oxabridge opening, decarboxylation, and dehydration. Exploration of the furfural scope yielded generic structure-reactivity-stability relationships. The proposed methodology enabled the redox-efficient, operationally simple, and mild synthesis of renewable (p-disubstituted) aromatics of commercial importance under remarkably mild conditions.


Subject(s)
Furaldehyde , Furans , Cycloaddition Reaction , Hydrazines , Hydrazones
8.
ACS Sustain Chem Eng ; 10(18): 6012-6022, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35571525

ABSTRACT

Feedstock flexibility is highly advantageous for the viability of (solvent-based) biorefineries but comes with the considerable challenge of having to cope with the varying nature and typically high abundance of nonlignocellulose compounds in the most readily available residual biomass streams. Here, we demonstrate that mild aqueous acetone organosolv fractionation of various complex lignocellulosic raw materials (roadside grass, wheat straw, birch branches, almond shells, and a mixed stream thereof) is indeed negatively affected by these compounds and present a versatile strategy to mitigate this bottleneck in biorefining. A biomass pre-extraction approach has been developed to remove the detrimental extractives with (aqueous) acetone prior to fractionation. Pre-extraction removed organic extractives as well as minerals, primarily reducing acid dose requirements for fractionation and loss of hemicellulose sugars by degradation and improved the purity of the isolated lignin. We show how pre-extraction affects the effectiveness of the biorefinery process, including detailed mass balances for pretreatment, downstream processing, and product characteristics, and how it affects solvent and energy use with a first conceptual process design. The integrated biorefining approach allows for the improved compatibility of biorefineries with sustainable feedstock supply chains, enhanced biomass valorization (i.e., isolation of bioactive compounds from the extract), and more effective biomass processing with limited variation in product quality.

9.
Angew Chem Int Ed Engl ; 61(17): e202114720, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35014138

ABSTRACT

Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.


Subject(s)
Furans , Cycloaddition Reaction , Furans/chemistry , Kinetics , Thermodynamics
10.
ChemSusChem ; 14(24): 5517-5524, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34812582

ABSTRACT

Technical lignins are increasingly available at industrial scale, offering opportunities for valorization, such as by (partial) depolymerization. Any downstream lignin application requires careful tailoring of structural properties, such as molecular weight or functional group density, properties that are difficult to control or predict given the structure variability and recalcitrance of technical lignins. Online insight into changes in molecular weight (Mw ), to gauge the extent of lignin depolymerization and repolymerization, would be highly desired to improve such control, but cannot be readily provided by the standard ex-situ techniques, such as size exclusion chromatography (SEC). Herein, operando attenuated total reflectance infrared (ATR-IR) spectroscopy combined with chemometrics provided temporal changes in Mw during lignin depolymerization with high resolution. More specifically, ex-situ SEC-derived Mw and polydispersity data of kraft lignin subjected to aqueous phase reforming conditions could be well correlated with ATR-IR spectra of the reaction mixture as a function of time. The developed method showed excellent regression results and relative error, comparable to the standard SEC method. The method developed has the potential to be translated to other lignin depolymerization processes.

11.
ChemSusChem ; 14(23): 5328-5335, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34668343

ABSTRACT

Nature provides much inspiration for the design of multistep conversion processes, with numerous reactions running simultaneously and without interference in cells, for example. A key challenge in mimicking nature's strategies is to compartmentalize incompatible reagents and catalysts, for example, for tandem catalysis. Here, we present a new strategy for antagonistic catalyst compartmentalization. The synthesis of bifunctional Janus catalyst particles carrying acid and base groups on the particle's opposite patches is reported as is their application as acid-base catalysts in oil/water emulsions. The synthesis strategy involved the use of monodisperse, hydrophobic and amine-functionalized silica particles (SiO2 -NH2 -OSi(CH3 )3 ) to prepare an oil-in-water Pickering emulsion (PE) with molten paraffin wax. After solidification, the exposed patch of the silica particles was selectively etched and refunctionalized with acid groups to yield acid-base Janus particles (Janus A-B). These materials were successfully applied in biphasic Pickering interfacial catalysis for the tandem dehydration-Knoevenagel condensation of fructose to 5-(hydroxymethyl)furfural-2-diethylmalonate (5-HMF-DEM) in a water/4-propylguaiacol PE. The results demonstrate the advantage of rapid extraction of 5-hydroxymethylfurfural (5-HMF), a prominent platform molecule prone to side product formation in acidic media. A simple strategy to tune the acid/base balance using PE with both Janus A-B and monofunctional SiO2 -NH2 -OSi(CH3 )3 base catalysts proved effective for antagonistic tandem catalysis.

12.
Green Chem ; 23(15): 5503-5510, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34381306

ABSTRACT

The furan Diels-Alder (DA) cycloaddition reaction has become an important tool in green chemistry, being central to the sustainable synthesis of many chemical building blocks. The restriction to electron-rich furans is a significant limitation of the scope of suitable dienes, in particular hampering the use of the furans most readily obtained from biomass, furfurals and their oxidized variants, furoic acids. Herein, it is shown that despite their electron-withdrawing substituents, 2-furoic acids and derivatives (esters, amides) are in fact reactive dienes in Diels-Alder couplings with maleimide dienophiles. The reactions benefit from a substantial rate-enhancement when water is used as solvent, and from activation of the 2-furoic acids by conversion to the corresponding carboxylate salts. This approach enables Diels-Alder reactions to be performed under very mild conditions, even with highly unreactive dienes such as 2,5-furandicarboxylic acid. The obtained DA adducts of furoic acids are shown to be versatile synthons in the conversion to various saturated and aromatic carbocyclic products.

13.
Microb Cell Fact ; 20(1): 151, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344380

ABSTRACT

BACKGROUND: The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. RESULTS: Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. CONCLUSIONS: This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.


Subject(s)
Aspergillus niger/genetics , Aspergillus niger/metabolism , Hydroquinones/metabolism , Lignin/metabolism , Metabolic Networks and Pathways/genetics , Vanillic Acid/metabolism , Aspergillus niger/enzymology , Benzaldehydes/metabolism , Hydroquinones/chemistry , Mixed Function Oxygenases , Vanillic Acid/analysis
14.
ChemSusChem ; 14(13): 2634, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34133080

ABSTRACT

Invited for this month's cover is the group of Pieter Bruijnincx from Utrecht University. The image shows an imaginary police line-up of two molecules suspected to be involved as intermediates in the catalytic ketonization reaction. Based on the evidence collected, depicted on the pinboard on the wall, the scientist discusses the impact of all this with somebody interested in catalysis that converts waste, wastewater-derived volatile fatty acids in this case, to value-added circular chemicals. The Full Paper itself is available at 10.1002/cssc.202100721.

15.
ChemSusChem ; 14(13): 2710-2720, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-33961345

ABSTRACT

The choice of TiO2 crystal phase (i. e., anatase, rutile, or brookite) greatly influences catalyst performance in the gas-phase ketonization of small volatile fatty acids, such as acetic acid and propionic acid. Rutile TiO2 was found to perform best, combining superior activity, as exemplified by an exceptional reaction rate of 141.8 mmol h-1 gcat -1 (at 425 °C and 24 h-1 ) with excellent ketone selectivity when propionic acid was used. Brookite, to the best of our knowledge never reported before as a viable ketonization catalyst, was found to outperform the well-studied anatase phase, but not rutile. Operando Fourier-transform IR spectroscopy measurements combined with on-line mass spectrometry showed that bidentate carboxylates were the most abundant surface species on the rutile and brookite surfaces, while on anatase both monodentate and bidentate carboxylates co-existed. The bidendate carboxylates were thought to be precursors to the active ketonization species, likely monodentate intermediates more prone to C-C coupling. Ketonization activity did not directly correlate with acidity; the observed, strong crystal phase effect did suggest that ketonization activity is influenced strongly by geometrical factors that determine the ease of formation of the relevant surface intermediates.

17.
Angew Chem Int Ed Engl ; 59(52): 23480-23484, 2020 12 21.
Article in English | MEDLINE | ID: mdl-32885556

ABSTRACT

A novel route for the production of the versatile chemical building block phthalide from biorenewable furfuryl alcohol and acrylate esters is presented. Two challenges that limit sustainable aromatics production via Diels-Alder (DA) aromatisation-an unfavourable equilibrium position and undesired regioselectivity when using asymmetric addends-were addressed using a dynamic kinetic trapping strategy. Activated acrylates were used to speed up the forward and reverse DA reactions, allowing for one of the four DA adducts to undergo a selective intramolecular lactonisation reaction in the presence of a weak base. The adduct is removed from the equilibrium pool, pulling the system completely to the product with a fixed, desired regiochemistry. A single 1,2-regioisomeric lactone product was formed in up to 86 % yield and the acrylate activating agent liberated for reuse. The lactone was aromatised to give phthalide in almost quantitative yield in the presence of Ac2 O and a catalytic amount of strong acid, or in 79 % using only catalytic acid.


Subject(s)
Benzofurans/chemistry , Cycloaddition Reaction/methods , Furans/chemistry , Biomass
18.
Chemistry ; 26(66): 15099-15102, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-32748465

ABSTRACT

Pickering emulsions (PEs), emulsions stabilized by solid particles, have shown to be a versatile tool for biphasic catalysis. Here, we report a droplet microfluidic approach for flow PE (FPE) catalysis, further expanding the possibilities for PE catalysis beyond standard batch PE reactions. This microreactor allowed for the inline analysis of the catalytic process with in situ Raman spectroscopy, as demonstrated for the acid-catalyzed deacetalization of benzaldehyde dimethyl acetal to form benzaldehyde. Furthermore, the use of the FPE system showed a nine fold improvement in yield compared to the simple biphasic flow system (FBS), highlighting the advantage of emulsification. Finally, FPE allowed an antagonistic set of reactions, the deacetalization-Knoevenagel condensation, which proved less efficient in FBS due to rapid acid-base quenching. The droplet microfluidic system thus offers a versatile new extension of PE catalysis.

19.
ChemSusChem ; 12(18): 4304-4312, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31313522

ABSTRACT

5-Hydroxymethylfurfural (HMF) is an important biobased platform chemical obtainable in high selectivity by the hydrolysis of fructose (FRC). However, FRC is expensive, making the production of HMF at a competitive market price highly challenging. Here, it is shown that sugar beet thick juice, a crude, sucrose-rich intermediate in sugar refining, is an excellent feedstock for HMF synthesis. Unprecedented high selectivities and yields of >90 % for HMF were achieved in a biphasic reactor setup at 150 °C using salted diluted thick juice with H2 SO4 as catalyst and 2-methyltetrahydrofuran as a bioderived extraction solvent. The conversion of glucose, obtained by sucrose inversion, could be limited to <10 mol %, allowing its recovery for further use. Interestingly, purified sucrose led to significantly lower HMF selectivity and yields, showing advantages from both an economic and chemical selectivity perspective. This opens new avenues for more cost-effective HMF production.

20.
ChemSusChem ; 12(10): 2176-2180, 2019 May 21.
Article in English | MEDLINE | ID: mdl-30945810

ABSTRACT

Tandem catalysis combines multiple conversion steps, catalysts, and reagents in one reaction medium, offering the potential to reduce waste and time. In this study, Pickering emulsions-emulsions stabilized by solid particles-are used as easy-to-prepare and bioinspired, compartmentalized reaction media for tandem catalysis. Making use of simple and inexpensive acid and base catalysts, the strategy of compartmentalization of two noncompatible catalysts in both phases of the emulsion is demonstrated by using the deacetalization-Knoevenagel condensation reaction of benzaldehyde dimethyl acetal as a probe reaction. In contrast to simple biphasic systems, which do not allow for tandem catalysis and show instantaneous quenching of the acid and base catalysts, the Pickering emulsions show efficient antagonistic tandem catalysis and give the desired product in high yield, as a result of an increased interfacial area and suppressed mutual destruction of the acid and base catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...