Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15529, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569742

ABSTRACT

The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10-9, improving previous results by almost two orders of magnitude.

2.
Phys Rev Lett ; 112(19): 190402, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24877918

ABSTRACT

We describe a new and experimentally feasible protocol for performing fundamental tests of quantum mechanics with massive objects. In our approach, a single two-level system is used to probe the motion of a nanomechanical resonator via multiple Ramsey interference measurements. This scheme enables the measurement of modular variables of macroscopic continuous-variable systems; we show that correlations thereof violate a Leggett-Garg inequality and can be applied for tests of quantum contextuality. Our method can be implemented with a variety of different solid-state or photonic qubit-resonator systems, and it provides a clear experimental signature to distinguish the predictions of quantum mechanics from those of other alternative theories at a macroscopic scale.

3.
Proc Natl Acad Sci U S A ; 108(39): 16182-7, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21900608

ABSTRACT

Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions.

4.
Phys Rev Lett ; 99(25): 250401, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18233499

ABSTRACT

We propose an immediately realizable scheme showing signatures of multipartite entanglement generated by radiation pressure in a cavity system with a movable mirror. We show how the entanglement involving the inaccessible massive object is unraveled by means of field-field quantum correlations and persists within a wide range of working conditions. Our proposal provides an operative way to infer the quantum behavior of a system that is only partially accessible.

5.
Phys Rev Lett ; 97(11): 110401, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-17025863

ABSTRACT

We propose a scheme to test Bell's inequalities for an arbitrary number of measurement outcomes on entangled continuous-variable (CV) states. The Bell correlation functions are expressible in terms of phase-space quasiprobability functions with complex ordering parameters, which can experimentally be determined via a local CV-qubit interaction. We demonstrate that CV systems can give higher violations of these Bell's inequalities than of the ones developed for two-outcome observables.

6.
Phys Rev Lett ; 94(4): 040504, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15783541

ABSTRACT

We have applied an entanglement purification protocol to produce a single entangled pair of photons capable of violating a Clauser-Horne-Shimony-Holt Bell inequality from two pairs that individually could not. The initial poorly entangled photons were created by a controllable decoherence that introduced complex errors. All of the states were reconstructed using quantum state tomography which allowed for a quantitative description of the improvement of the state after purification.

7.
Phys Rev Lett ; 86(20): 4427-30, 2001 May 14.
Article in English | MEDLINE | ID: mdl-11384251

ABSTRACT

It has recently been questioned whether the Kochen-Specker theorem is relevant to real experiments, which by necessity only have finite precision. We give an affirmative answer to this question by showing how to derive hidden-variable theorems that apply to real experiments, so that noncontextual hidden variables can indeed be experimentally disproved. The essential point is that for the derivation of hidden-variable theorems one does not have to know which observables are really measured by the apparatus. Predictions can be derived for observables that are defined in an entirely operational way.

8.
Nature ; 410(6832): 1067-70, 2001 Apr 26.
Article in English | MEDLINE | ID: mdl-11323664

ABSTRACT

The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...