Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296775

ABSTRACT

This work demonstrates the enhancement in plasmonic sensing efficacy resulting from spatially-localized functionalization on nanostructured surfaces, whereby probe molecules are concentrated in areas of high field concentration. Comparison between SERS measurements on nanostructured surfaces (arrays of nanodisks 110 and 220 nm in diameter) with homogeneous and spatially-localized functionalization with thiophenol demonstrates that the Raman signal originates mainly from areas with high field concentration. TERS measurements with 10 nm spatial resolution confirm the field distribution profiles predicted by the numerical modeling. Though this enhancement in plasmonic sensing efficacy is demonstrated with SERS, results apply equally well to any type of optical/plasmonic sensing on functionalized surfaces with nanostructuring.

2.
Bioessays ; 43(4): e2000295, 2021 04.
Article in English | MEDLINE | ID: mdl-33543495

ABSTRACT

Widespread preservation of fossilized biomolecules in many fossil animals has recently been reported in six studies, based on Raman microspectroscopy. Here, we show that the putative Raman signatures of organic compounds in these fossils are actually instrumental artefacts resulting from intense background luminescence. Raman spectroscopy is based on the detection of photons scattered inelastically by matter upon its interaction with a laser beam. For many natural materials, this interaction also generates a luminescence signal that is often orders of magnitude more intense than the light produced by Raman scattering. Such luminescence, coupled with the transmission properties of the spectrometer, induced quasi-periodic ripples in the measured spectra that have been incorrectly interpreted as Raman signatures of organic molecules. Although several analytical strategies have been developed to overcome this common issue, Raman microspectroscopy as used in the studies questioned here cannot be used to identify fossil biomolecules.


Subject(s)
Fossils , Spectrum Analysis, Raman , Animals , Artifacts , Preservation, Biological
3.
Chem Commun (Camb) ; 56(50): 6822-6825, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32432249

ABSTRACT

Surface-enhanced Raman scattering (SERS) tags are usually prepared by immobilizing Raman reporters on plasmonic nanoparticles (NPs) via thiol-based self-assembled monolayers. We describe here the first example of SERS tags obtained by combining gold NPs and aryl diazonium salts. This strategy results in robust Au-C covalent bonds between the Raman reporter and the NPs, thus ensuring a high stability of the nanohybrid interface.

4.
Faraday Discuss ; 205: 387-407, 2017 12 04.
Article in English | MEDLINE | ID: mdl-28895964

ABSTRACT

Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K+ depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.


Subject(s)
Neurotransmitter Agents/analysis , Spectrum Analysis, Raman/methods , Acetylcholine/analysis , Animals , Dopamine/analysis , Glutamic Acid/analysis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Transgenic , Microscopy, Fluorescence , Neurons/metabolism , Neurons/pathology , gamma-Aminobutyric Acid/analysis
5.
Small ; 13(38)2017 10.
Article in English | MEDLINE | ID: mdl-28834166

ABSTRACT

Gold-coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface-enhanced Raman scattering (SERS), large-scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface-guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold-coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96-well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high-performance plasmonic sensing.

6.
Analyst ; 142(12): 2161-2168, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28548156

ABSTRACT

A field-deployable surface plasmon resonance (SPR) sensor is reported for the detection of the energetic material (commonly termed explosives) 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) at ppb concentration in environmental samples. The SPR sensor was first validated under laboratory conditions with uncontaminated natural water samples spiked with known concentrations of RDX near the EPA limit of 2 ppb, which was then applied to monitor environmental samples collected in different downgradient wells near a grenade training range. The SPR sensor was finally tested on the field, where environmental samples were analysed on location in less than 90 minutes per well, which included the time to setup the equipment, sample the well and analyse the sample. The SPR analysis time was less than 45 minutes for equilibration, recalibration and measuring the water sample. Results obtained with the SPR sensors were cross-validated with the standard HPLC method (EPA method 8330b), and they showed good agreement with an accuracy within less than 1.6 ppb for analysis at the sampling sites, and with the relative standard deviation (RSD) better than 20% for field and laboratory measurements. The SPR sensor worked in a range of environmental conditions, including operation from about 0 °C to nearly 30 °C. The instrument was easily deployed near the sampling site using motor vehicles under summer conditions (Lab-in-a-Jeep) and using a sled under winter conditions (Lab-on-a-sled), showcasing the field deployability of the RDX SPR sensor and the possibility of continuously monitoring RDX in the environment.

7.
Nano Lett ; 16(6): 3866-71, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27172291

ABSTRACT

We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies.

8.
Sci Rep ; 6: 20383, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26833130

ABSTRACT

Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.


Subject(s)
Spectrum Analysis, Raman , Algorithms , Biosensing Techniques , Cysteine/chemistry , Models, Theoretical , Monte Carlo Method , Odorants/analysis , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...