Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(5): e0251883, 2021.
Article in English | MEDLINE | ID: mdl-34014980

ABSTRACT

Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly "sulfate-reducing" phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.


Subject(s)
Bacteria/metabolism , Iron/metabolism , Microbiota/genetics , Sulfates/metabolism , Anthraquinones/chemistry , Bacteria/chemistry , Biodegradation, Environmental , Electron Transport/genetics , Ferric Compounds/chemistry , Groundwater/chemistry , Humans , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sulfur Oxides/chemistry
2.
Microbiome ; 7(1): 39, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867067

ABSTRACT

BACKGROUND: There are complex interactions between aging, frailty, diet, and the gut microbiota; modulation of the gut microbiota by diet could lead to healthier aging. The purpose of this study was to test the effect of diets differing in sugar, fat, and fiber content upon the gut microbiota of mice humanized with microbiota from healthy or frail older people. We also performed a 6-month dietary fiber supplementation in three human cohorts representing three distinct life-stages. METHODS: Mice were colonized with human microbiota and then underwent an 8-week dietary intervention with either a high-fiber/low-fat diet typical of elderly community dwellers or a low-fiber/high-fat diet typical of long-stay residential care subjects. A cross-over design was used where the diets were switched after 4 weeks to the other diet type to identify responsive taxa and innate immunity changes. In the human intervention, the subjects supplemented their normal diet with a mix of five prebiotics (wheat dextrin, resistant starch, polydextrose, soluble corn fiber, and galactooligo-saccharide) at 10 g/day combined total, for healthy subjects and 20 g/day for frail subjects, or placebo (10 g/day maltodextrin) for 26 weeks. The gut microbiota was profiled and immune responses were assayed by T cell markers in mice, and serum cytokines in humans. RESULTS: Humanized mice maintained gut microbiota types reflecting the respective healthy or frail human donor. Changes in abundance of specific taxa occurred with the diet switch. In mice with the community type microbiota, the observed differences reflected compositions previously associated with higher frailty. The dominance of Prevotella present initially in community inoculated mice was replaced by Bacteroides, Alistipes, and Oscillibacter. Frail type microbiota showed a differential effect on innate immune markers in both conventional and germ-free mice, but a moderate number of taxonomic changes occurring upon diet switch with an increase in abundance of Parabacteroides, Blautia, Clostridium cluster IV, and Phascolarctobacterium. In the human intervention, prebiotic supplementation did not drive any global changes in alpha- or beta-diversity, but the abundance of certain bacterial taxa, particularly Ruminococcaceae (Clostridium cluster IV), Parabacteroides, Phascolarctobacterium, increased, and levels of the chemokine CXCL11 were significantly lower in the frail elderly group, but increased during the wash-out period. CONCLUSIONS: Switching to a nutritionally poorer diet has a profound effect on the microbiota in mouse models, with changes in the gut microbiota from healthy donors reflecting previously observed differences between elderly frail and non-frail individuals. However, the frailty-associated gut microbiota did not reciprocally switch to a younger healthy-subject like state, and supplementation with prebiotics was associated with fewer detected effects in humans than diet adjustment in animal models.


Subject(s)
Aging/immunology , Bacteria/classification , Germ-Free Life/immunology , Immunity, Innate/drug effects , Microbiota/drug effects , Prebiotics/administration & dosage , Adult , Aged , Animals , Bacteria/drug effects , Bacteria/genetics , Biodiversity , Chemokine CXCL11/genetics , Cross-Over Studies , Feces/microbiology , Female , Frail Elderly , Gastrointestinal Tract/microbiology , Humans , Male , Mice , Middle Aged , Models, Animal , Prebiotics/adverse effects , Treatment Outcome , Up-Regulation , Young Adult
3.
Cell Host Microbe ; 19(1): 21-31, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26764594

ABSTRACT

Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Yersinia Infections/microbiology , Yersinia enterocolitica/physiology , Animals , Chronic Disease , Disease Progression , Female , Humans , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Knockout , Toll-Like Receptor 1/genetics , Toll-Like Receptor 1/immunology , Yersinia Infections/genetics , Yersinia Infections/immunology
4.
PLoS One ; 11(1): e0146689, 2016.
Article in English | MEDLINE | ID: mdl-26800443

ABSTRACT

Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.


Subject(s)
Acetic Acid/metabolism , Desulfotomaculum/metabolism , Ferric Compounds/metabolism , Glucose/metabolism , Lactic Acid/metabolism , Microbial Consortia/physiology , Sulfates/metabolism , Base Sequence , Biodegradation, Environmental , Carbon/chemistry , Carbonates/metabolism , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Desulfotomaculum/genetics , Electrons , Energy Metabolism/physiology , Ferrous Compounds/metabolism , Metabolic Networks and Pathways/physiology , Oxidation-Reduction , Phosphates/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Int J Food Microbiol ; 203: 109-21, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25817019

ABSTRACT

Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients.


Subject(s)
Bifidobacterium/metabolism , Dietary Carbohydrates/metabolism , Lactobacillus/metabolism , Aged , Bifidobacterium/growth & development , Bifidobacterium/isolation & purification , Chromatography, High Pressure Liquid , Humans , Hydrogen-Ion Concentration , Infant , Intestines/microbiology , Inulin/metabolism , Lactobacillus/growth & development , Lactobacillus/isolation & purification , Oligosaccharides/metabolism , Prebiotics , Species Specificity
6.
Am J Clin Nutr ; 101(1): 55-64, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25527750

ABSTRACT

BACKGROUND: In our published randomized, double-blind, placebo-controlled, 3-period crossover trial, healthy adult men (n = 21) consumed bars containing no supplemental fiber (placebo; NFC), polydextrose (21 g/d), and soluble corn fiber (SCF; 21 g/d) for 21 d each. Fecal specimens were collected between days 16 and 21 for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for bacterial taxa identification. Fiber supplementation decreased fecal putrefaction compounds and shifted abundances of several bacterial taxa. OBJECTIVE: The objective was to perform whole-genome shotgun 454 pyrosequencing on the same fecal specimens collected in that clinical trial to obtain comprehensive fecal bacterial genome sequencing coverage and explore the full range of bacterial genetic information in the fecal microbiome, thereby using a systematic approach to study the impact of dietary fiber supplementation on fecal metabolites, bacterial taxa, and bacterial metagenomes. DESIGN: Fecal samples were subjected to whole-genome shotgun 454 pyrosequencing to identify both fecal bacterial populations present and their functional genetic capacity. RESULTS: Whole-genome shotgun sequencing results revealed that fiber consumption shifted the Bacteroidetes:Firmicutes ratio, increasing the relative abundance of Bacteroidetes 12 ± 2% and 13 ± 2% with polydextrose and SCF, respectively, compared with NFC. Bivariate correlations showed a positive correlation between the Bacteroidetes:Firmicutes ratio and total dietary fiber intake but not body mass index. Principal coordinates analysis of Bray-Curtis distances indicated that bacterial gene composition was more similar in participants consuming fibers (polydextrose and SCF combined) in comparison with NFC. Shifts in bacterial gene abundances after polydextrose and SCF supplementation included genes associated with carbohydrate, amino acid, and lipid metabolism, as well as metabolism of cofactors and vitamins. CONCLUSION: This study conveys novel information about the impact of dietary fiber supplementation on the phylogenetic structure and functional capacity of the fecal microbiome of healthy adults.


Subject(s)
Bacteroidetes/growth & development , Gram-Positive Bacteria/growth & development , Intestines/microbiology , Microbiota , Prebiotics , Adult , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Cross-Over Studies , Digestive System Physiological Phenomena , Double-Blind Method , Feces/microbiology , Fermentation , Follow-Up Studies , Glucans/administration & dosage , Glucans/adverse effects , Glucans/chemistry , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/metabolism , Humans , Illinois , Intestines/physiology , Male , Molecular Typing , Phylogeny , Prebiotics/adverse effects , Principal Component Analysis , Solubility , Young Adult , Zea mays/adverse effects , Zea mays/chemistry
7.
Microbiome ; 1(1): 20, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-24450928

ABSTRACT

BACKGROUND: Preterm infants represent a unique patient population that is born functionally immature and must accomplish development under the influence of a hospital environment. Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. The purpose of this study was to evaluate the progression of intestinal microbiota community development between preterm infants who remained healthy compared to preterm infants who developed NEC. RESULTS: Weekly fecal samples from ten preterm infants, five with NEC and five matched healthy controls were obtained. Bacterial DNA from individual fecal samples was subjected to sequencing of 16S rRNA-based inventories using the 454 GS-FLX platform. Fecal samples from control infants demonstrated a temporal pattern in their microbiota, which converged toward that of a healthy full term breast-fed infant. Microbiota development in NEC patients diverged from controls beginning three weeks prior to diagnosis. Shotgun metagenomic sequencing was performed to identify functional differences in the respective microbiota of fecal samples from a set of twins in which one twin developed NEC and one did not. The majority of the differentially abundant genes in the NEC patient were associated with carbohydrate metabolism and mapped to members of the family Enterobacteriaceae. This may indicate an adaptation of the community to an altered profile of substrate availability for specific members as a first step towards the development of NEC. We propose that the microbial communities as a whole may metabolize milk differently, resulting in differential substrate availability for specific microbial groups. Additional differentially represented gene sets of interest were related to antibiotic resistance and vitamin biosynthesis. CONCLUSIONS: Our results suggest that there is a temporal component to microbiome development in healthy preterm infants. Thus, bacteriotherapy for the treatment or prevention of NEC must consider this temporal component of the microbial community in addition to its taxonomic composition and functional content.

8.
Microbiome ; 1(1): 9, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-24451366

ABSTRACT

BACKGROUND: The indigenous gut microbiota are thought to play a crucial role in the development and maintenance of the abnormal inflammatory responses that are the hallmark of inflammatory bowel disease. Direct tests of the role of the gut microbiome in these disorders are typically limited by the fact that sampling of the microbiota generally occurs once disease has become manifest. This limitation could potentially be circumvented by studying patients who undergo total proctocolectomy with ileal pouch anal anastomosis (IPAA) for the definitive treatment of ulcerative colitis. A subset of patients who undergo IPAA develops an inflammatory condition known as pouchitis, which is thought to mirror the pathogenesis of ulcerative colitis. Following the development of the microbiome of the pouch would allow characterization of the microbial community that predates the development of overt disease. RESULTS: We monitored the development of the pouch microbiota in four patients who underwent IPAA. Mucosal and luminal samples were obtained prior to takedown of the diverting ileostomy and compared to samples obtained 2, 4 and 8 weeks after intestinal continuity had been restored. Through the combined analysis of 16S rRNA-encoding gene amplicons, targeted 16S amplification and microbial cultivation, we observed major changes in structure and function of the pouch microbiota following ileostomy. There is a relative increase in anaerobic microorganisms with the capacity for fermentation of complex carbohydrates, which corresponds to the physical stasis of intestinal contents in the ileal pouch. Compared to the microbiome structure encountered in the colonic mucosa of healthy individuals, the pouch microbial community in three of the four individuals was quite distinct. In the fourth patient, a community that was much like that seen in a healthy colon was established, and this patient also had the most benign clinical course of the four patients, without the development of pouchitis 2 years after IPAA. CONCLUSIONS: The microbiota that inhabit the ileal-anal pouch of patients who undergo IPAA for treatment of ulcerative colitis demonstrate significant structural and functional changes related to the restoration of fecal flow. Our preliminary results suggest once the pouch has assumed the physiologic role previously played by the intact colon, the precise structure and function of the pouch microbiome, relative to a normal colonic microbiota, will determine if there is establishment of a stable, healthy mucosal environment or the reinitiation of the pathogenic cascade that results in intestinal inflammation.

9.
J Nutr ; 142(7): 1259-65, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22649263

ABSTRACT

The relative contribution of novel fibers such as polydextrose and soluble corn fiber (SCF) to the human gut microbiome and its association with host physiology has not been well studied. This study was conducted to test the impact of polydextrose and SCF on the composition of the human gut microbiota using 454 pyrosequencing and to identify associations among fecal microbiota and fermentative end-products. Healthy adult men (n = 20) with a mean dietary fiber (DF) intake of 14 g/d were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants consumed 3 treatment snack bars/d during each 21-d period that contained no supplemental fiber (NFC), polydextrose (PDX; 21 g/d), or SCF (21 g/d) for 21 d. There were no washout periods. Fecal samples were collected on d 16-21 of each period; DNA was extracted, followed by amplification of the V4-V6 region of the 16S rRNA gene using barcoded primers. PDX and SCF significantly affected the relative abundance of bacteria at the class, genus, and species level. The consumption of PDX and SCF led to greater fecal Clostridiaceae and Veillonellaceae and lower Eubacteriaceae compared with a NFC. The abundance of Faecalibacterium, Phascolarctobacterium, and Dialister was greater (P < 0.05) in response to PDX and SCF intake, whereas Lactobacillus was greater (P < 0.05) only after SCF intake. Faecalibacterium prausnitzii, well known for its antiinflammatory properties, was greater (P < 0.05) after fiber consumption. Principal component analysis clearly indicated a distinct clustering of individuals consuming supplemental fibers. Our data demonstrate a beneficial shift in the gut microbiome of adults consuming PDX and SCF, with potential application as prebiotics.


Subject(s)
Bacteria/drug effects , Colon/microbiology , Dietary Fiber/pharmacology , Glucans/pharmacology , Metagenome/drug effects , Prebiotics , Zea mays/chemistry , Adult , Bacteria/genetics , Bacteria/growth & development , Bacterial Typing Techniques , Cross-Over Studies , DNA , DNA Primers , Diet , Feces/microbiology , Humans , Inflammation/microbiology , Male , Principal Component Analysis , RNA, Ribosomal, 16S
10.
Proc Natl Acad Sci U S A ; 109(25): 9692-8, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22615407

ABSTRACT

The theoretical description of the forces that shape ecological communities focuses around two classes of models. In niche theory, deterministic interactions between species, individuals, and the environment are considered the dominant factor, whereas in neutral theory, stochastic forces, such as demographic noise, speciation, and immigration, are dominant. Species abundance distributions predicted by the two classes of theory are difficult to distinguish empirically, making it problematic to deduce ecological dynamics from typical measures of diversity and community structure. Here, we show that the fusion of species abundance data with genome-derived measures of evolutionary distance can provide a clear indication of ecological dynamics, capable of quantifying the relative roles played by niche and neutral forces. We apply this technique to six gastrointestinal microbiomes drawn from three different domesticated vertebrates, using high-resolution surveys of microbial species abundance obtained from carefully curated deep 16S rRNA hypervariable tag sequencing data. Although the species abundance patterns are seemingly well fit by the neutral theory of metacommunity assembly, we show that this theory cannot account for the evolutionary patterns in the genomic data; moreover, our analyses strongly suggest that these microbiomes have, in fact, been assembled through processes that involve a significant nonneutral (niche) contribution. Our results demonstrate that high-resolution genomics can remove the ambiguities of process inference inherent in classic ecological measures and permits quantification of the forces shaping complex microbial communities.


Subject(s)
Gastrointestinal Tract/microbiology , Metagenome , Animals , Cattle , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Species Specificity , Swine
11.
Stand Genomic Sci ; 5(2): 198-202, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-22180822

ABSTRACT

This report summarizes the proceedings of the 2(nd) Annual Argonne Soils Workshop held at Argonne National Laboratory October 6-8, 2010. The workshop assembled a diverse group of soil ecologists, microbiologists, molecular biologists, and computational scientists to discuss the challenges and opportunities related to implementation of metagenomics approaches in soil microbial ecology. The overarching theme of the workshop was "designing ecologically meaningful soil metagenomics research", which encouraged presentations on both ecological and computational topics. The workshop fostered valuable cross-discipline communication and delivered the message that soil metagenomics research must be based on an iterative process between biological inquiry and bioinformatics tools.

12.
PLoS One ; 6(10): e25329, 2011.
Article in English | MEDLINE | ID: mdl-22043282

ABSTRACT

BACKGROUND: The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA. PRINCIPAL FINDINGS: As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located. CONCLUSIONS: The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.


Subject(s)
Cellulose/metabolism , Rumen/microbiology , Animals , Biodiversity , Cattle , Cellulose/genetics , Diet , Gram-Positive Bacterial Infections/microbiology , Metagenome , Phylogeny , RNA, Ribosomal, 16S , Ruminococcus/genetics , Ruminococcus/isolation & purification , Species Specificity
13.
Invest Ophthalmol Vis Sci ; 52(8): 5408-13, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21571682

ABSTRACT

PURPOSE: Ocular surface (OS) microbiota contributes to infectious and autoimmune diseases of the eye. Comprehensive analysis of microbial diversity at the OS has been impossible because of the limitations of conventional cultivation techniques. This pilot study aimed to explore true diversity of human OS microbiota using DNA sequencing-based detection and identification of bacteria. METHODS: Composition of the bacterial community was characterized using deep sequencing of the 16S rRNA gene amplicon libraries generated from total conjunctival swab DNA. The DNA sequences were classified and the diversity parameters measured using bioinformatics software ESPRIT and MOTHUR and tools available through the Ribosomal Database Project-II (RDP-II). RESULTS: Deep sequencing of conjunctival rDNA from four subjects yielded a total of 115,003 quality DNA reads, corresponding to 221 species-level phylotypes per subject. The combined bacterial community classified into 5 phyla and 59 distinct genera. However, 31% of all DNA reads belonged to unclassified or novel bacteria. The intersubject variability of individual OS microbiomes was very significant. Regardless, 12 genera-Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium-were ubiquitous among the analyzed cohort and represented the putative "core" of conjunctival microbiota. The other 47 genera accounted for <4% of the classified portion of this microbiome. Unexpectedly, healthy conjunctiva contained many genera that are commonly identified as ocular surface pathogens. CONCLUSIONS: The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria.


Subject(s)
Bacteria/genetics , Conjunctiva/microbiology , Metagenome/physiology , Adult , DNA, Bacterial/genetics , Gene Library , Genes, rRNA/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pilot Projects , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Proc Natl Acad Sci U S A ; 106(6): 1948-53, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19181843

ABSTRACT

The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).


Subject(s)
Genomics/methods , Glycoside Hydrolases/genetics , Metabolomics/methods , Metagenome , Animals , Base Sequence , Cattle , Cellulosomes/genetics , Diet , Food , Glycoside Hydrolases/analysis , Isoptera , Metabolism , Molecular Sequence Data , Rumen
15.
PLoS One ; 3(8): e2945, 2008 Aug 13.
Article in English | MEDLINE | ID: mdl-18698407

ABSTRACT

BACKGROUND: The complex microbiome of the ceca of chickens plays an important role in nutrient utilization, growth and well-being of these animals. Since we have a very limited understanding of the capabilities of most species present in the cecum, we investigated the role of the microbiome by comparative analyses of both the microbial community structure and functional gene content using random sample pyrosequencing. The overall goal of this study was to characterize the chicken cecal microbiome using a pathogen-free chicken and one that had been challenged with Campylobacter jejuni. METHODOLOGY/PRINCIPAL FINDINGS: Comparative metagenomic pyrosequencing was used to generate 55,364,266 bases of random sampled pyrosequence data from two chicken cecal samples. SSU rDNA gene tags and environmental gene tags (EGTs) were identified using SEED subsystems-based annotations. The distribution of phylotypes and EGTs detected within each cecal sample were primarily from the Firmicutes, Bacteroidetes and Proteobacteria, consistent with previous SSU rDNA libraries of the chicken cecum. Carbohydrate metabolism and virulence genes are major components of the EGT content of both of these microbiomes. A comparison of the twelve major pathways in the SEED Virulence Subsystem (metavirulome) represented in the chicken cecum, mouse cecum and human fecal microbiomes showed that the metavirulomes differed between these microbiomes and the metavirulomes clustered by host environment. The chicken cecum microbiomes had the broadest range of EGTs within the SEED Conjugative Transposon Subsystem, however the mouse cecum microbiomes showed a greater abundance of EGTs in this subsystem. Gene assemblies (32 contigs) from one microbiome sample were predominately from the Bacteroidetes, and seven of these showed sequence similarity to transposases, whereas the remaining sequences were most similar to those from catabolic gene families. CONCLUSION/SIGNIFICANCE: This analysis has demonstrated that mobile DNA elements are a major functional component of cecal microbiomes, thus contributing to horizontal gene transfer and functional microbiome evolution. Moreover, the metavirulomes of these microbiomes appear to associate by host environment. These data have implications for defining core and variable microbiome content in a host species. Furthermore, this suggests that the evolution of host specific metavirulomes is a contributing factor in disease resistance to zoonotic pathogens.


Subject(s)
Cecum/microbiology , Chickens/genetics , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Campylobacter Infections/genetics , Campylobacter Infections/veterinary , Campylobacter jejuni/classification , Campylobacter jejuni/genetics , Cecum/physiopathology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Gene Transfer, Horizontal , Genomics , Metagenome , Phylogeny , Poultry Diseases/genetics , Poultry Diseases/microbiology , RNA, Bacterial/genetics
16.
FEMS Microbiol Lett ; 285(2): 188-94, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18564339

ABSTRACT

Ruminococcus flavefaciens is a vital cellulosome-producing fibrolytic rumen bacterium. The arrangement of the cellulosomal scaffoldin gene cluster (scaC-scaA-scaB-cttA-scaE) is conserved in two R. flavefaciens strains (17 and FD-1). Sequence analysis revealed a high mosaic conservation of the intergenic regions in the two strains that contrasted sharply with the divergence of the structural sca gene sequences. Based on the conserved intergenic regions, we designed PCR primers in order to examine the sca gene cluster in additional R. flavefaciens strains (C94, B34b, C1a and JM1). Using these conserved and/or degenerate primers, the scaC, scaA and scaB genes were amplified in all six strains, while the entire sca gene cluster and the proximal genes cttA and scaE were successfully amplified in four of the strains (17, FD-1, C94 and JM1). The sequencing of scaA and scaC genes in all the strains yielded additional insight into the variability of the structural genes with regard to the number and type of cohesin modules contained in a conserved molecular skeleton. Moreover, the scaC gene, being short and variable, appears to be a promising functional phylotyping target for metagenomic population studies of R. flavefaciens in the rumen as a function of the individual host animal.


Subject(s)
Cellulosomes/genetics , Genes, Bacterial , Multigene Family , Polymorphism, Genetic , Ruminococcus/classification , Ruminococcus/genetics , Animals , Bacterial Proteins/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Primers/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Intergenic , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gene Order , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction/methods , Protein Structure, Tertiary , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Synteny , Cohesins
17.
Nature ; 452(7187): 629-32, 2008 Apr 03.
Article in English | MEDLINE | ID: mdl-18337718

ABSTRACT

Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Ecosystem , Gene Expression Profiling , Genomics , Viruses/genetics , Viruses/metabolism , Animals , Anthozoa/physiology , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/isolation & purification , Chemotaxis/genetics , Computational Biology , Culicidae/physiology , Fishes/physiology , Fresh Water , Genome, Archaeal , Genome, Bacterial , Genome, Viral , Microbiology , Seawater , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...