Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Fertil Dev ; 29(9): 1803-1812, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27755963

ABSTRACT

Mercury is a ubiquitous environmental pollutant and mercury contamination and toxicity are serious hazards to human health. Some studies have shown that mercury impairs male reproductive function, but less is known about its effects following exposure at low doses and the possible mechanisms underlying its toxicity. Herein we show that exposure of rats to mercury chloride for 30 days (first dose 4.6µgkg-1, subsequent doses 0.07µgkg-1day-1) resulted in mean (±s.e.m.) blood mercury concentrations of 6.8±0.3ngmL-1, similar to that found in human blood after occupational exposure or released from removal of amalgam fillings. Even at these low concentrations, mercury was deposited in reproductive organs (testis, epididymis and prostate), impaired sperm membrane integrity, reduced the number of mature spermatozoa and, in the testes, promoted disorganisation, empty spaces and loss of germinal epithelium. Mercury increased levels of reactive oxygen species and the expression of glutathione peroxidase (GPx) 1 and GPx4. These results suggest that the toxic effects of mercury on the male reproductive system are due to its accumulation in reproductive organs and that the glutathione system is its potential target. The data also suggest, for the first time, a possible role of the selenoproteins GPx1 and GPx4 in the reproductive toxicity of mercury chloride.


Subject(s)
Glutathione Peroxidase/metabolism , Mercury/pharmacology , Sperm Motility/drug effects , Spermatozoa/drug effects , Testis/drug effects , Animals , Epididymis/drug effects , Epididymis/metabolism , Glutathione/metabolism , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Spermatozoa/metabolism , Testis/metabolism
2.
J Toxicol Environ Health A ; 77(1-3): 143-54, 2014.
Article in English | MEDLINE | ID: mdl-24555655

ABSTRACT

Mercury (Hg) is a widespread environmental pollutant that adversely affects the male reproductive system. The precise mechanisms underlying mercuric chloride (HgCl2)-induced toxicity are not fully understood; however, evidence indicates that oxidative stress may be involved in this process. Although the adverse effects of high levels of inorganic Hg on the male reproductive system have been investigated, the effects of low levels of exposure are unknown. Therefore, the aim of this study was to investigate the effects of chronic exposure to low concentrations of HgCl2 on sperm parameters, lipid peroxidation, and antioxidant activity of male rats. Three-month-old male Wistar rats were treated for 30 d and divided into groups: control (saline, i.m.) and HgCl2 group (i.m., first dose 4.6 µg/kg, subsequent doses 0.07 µg/kg/d). Sperm parameters (count, motility and morphology) and biomarkers of oxidative stress in testis, epididymis, prostate, and vas deferens were analyzed. Mercury treatment produced a reduction in sperm quantity (testis and epididymis) and daily sperm production, following by decrease in sperm motility and increase on head and tail morphologic abnormalities. HgCl2 exposure was correlated with enhanced oxidative stress in reproductive organs, represented not only by augmented lipid peroxidation but also by changes in antioxidant enzymes activity superoxide dismutase (SOD) and catalase (CAT) and nonprotein thiol levels. In conclusion, chronic exposure to low doses of Hg impaired sperm quality and adversely affected male reproductive functions, which may be due, at least in part, to enhanced oxidative stress.


Subject(s)
Environmental Pollutants/toxicity , Mercuric Chloride/toxicity , Oxidative Stress/drug effects , Spermatozoa/drug effects , Animals , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Male , Rats , Rats, Wistar , Sperm Count , Sperm Motility/drug effects , Spermatozoa/pathology , Spermatozoa/physiology , Toxicity Tests, Chronic
SELECTION OF CITATIONS
SEARCH DETAIL
...