Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neuroscience ; 248: 95-111, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23727452

ABSTRACT

Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)1-VGLUT3 transcripts in lumbar 4-5 (L4-5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.


Subject(s)
Ganglia, Spinal/metabolism , Neurons/metabolism , Spinal Cord/metabolism , Vesicular Glutamate Transport Proteins/metabolism , Amino Acid Transport Systems, Acidic/analysis , Amino Acid Transport Systems, Acidic/metabolism , Animals , Axotomy , Hindlimb , Inflammation/metabolism , Male , Mice , Mice, Inbred BALB C , RNA, Messenger/metabolism , Sciatic Nerve/injuries , Vesicular Glutamate Transport Protein 1/analysis , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/analysis , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Proteins/analysis
2.
Neuroscience ; 223: 77-91, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22858598

ABSTRACT

Previous studies in rat and mouse documented that a subpopulation of dorsal root ganglion (DRG) neurons innervating non-visceral tissues express tyrosine hydroxylase (TH). Here we studied whether or not mouse DRG neurons retrogradely traced with Fast Blue (FB) from colorectum or urinary bladder also express immunohistochemically detectable TH. The lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) were included in the analysis. Previously characterized antibodies against TH, norepinephrine transporter type 1 (NET-1) and calcitonin gene-related peptide (CGRP) were used. On average, ∼14% of colorectal and ∼17% of urinary bladder DRG neurons expressed TH and spanned virtually all neuronal sizes, although more often in the medium-sized to small ranges. Also, they were more abundant in lumbosacral than thoracolumbar DRGs, and often coexpressed CGRP. We also detected several TH-immunoreactive (IR) colorectal and urinary bladder neurons in the LSC and the MPG, more frequently in the former. No NET-1-IR neurons were detected in DRGs, whereas the majority of FB-labeled, TH-IR neurons in the LSC and MPG coexpressed this marker (as did most other TH-IR neurons not labeled from the target organs). TH-IR nerve fibers were detected in all layers of the colorectum and the urinary bladder, with some also reaching the basal mucosal cells. Most TH-IR fibers in these organs lacked CGRP. Taken together, we show: (1) that a previously undescribed population of colorectal and urinary bladder DRG neurons expresses TH, often CGRP but not NET-1, suggesting the absence of a noradrenergic phenotype; and (2) that TH-IR axons/terminals in the colon or urinary bladder, naturally expected to derive from autonomic sources, could also originate from sensory neurons.


Subject(s)
Colon/innervation , Ganglia, Spinal/cytology , Neurons/physiology , Tyrosine 3-Monooxygenase/metabolism , Urinary Bladder/innervation , Amidines/metabolism , Animals , Calcitonin Gene-Related Peptide/metabolism , Male , Mice , Mice, Inbred BALB C , Neurons, Afferent/physiology , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Pelvis/innervation
3.
Auton Neurosci ; 153(1-2): 106-15, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-19679518

ABSTRACT

Viscero-somatic referral and sensitization has been well documented clinically and widely investigated, whereas viscero-visceral referral and sensitization (termed cross-organ sensitization) has only recently received attention as important to visceral disease states. Because second order neurons in the CNS have been extensively shown to receive convergent input from different visceral organs, it has been assumed that cross-organ sensitization arises by the same convergence-projection mechanism as advanced for viscero-somatic referral and sensitization. However, increasing evidence also suggests participation of peripheral mechanisms to explain referral and sensitization. We briefly summarize behavioral, morphological and physiological support of and focus on potential mechanisms underlying cross-organ sensitization.


Subject(s)
Autonomic Nervous System/physiology , Sense Organs/innervation , Sense Organs/physiology , Visceral Afferents/physiology , Animals , Central Nervous System/physiology , Gastrointestinal Tract/innervation , Humans , Mechanotransduction, Cellular/physiology , Skin/innervation , Urinary Bladder/innervation
4.
Neuropeptides ; 43(2): 125-32, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19168218

ABSTRACT

Single ligature nerve constriction (SLNC) of the rat sciatic nerve triggers neuropathic pain-related behaviors and induces changes in neuropeptide expression in primary afferent neurons. Bone marrow stromal cells (MSCs) injected into the lumbar 4 (L4) dorsal root ganglia (DRGs) of animals subjected to a sciatic nerve SLNC selectively migrate to the other ipsilateral lumbar DRGs (L3, L5 and L6) and prevent mechanical and thermal allodynia. In this study, we have evaluated the effect of MSC administration on the expression of the neuropeptides galanin and NPY, as well as the NPY Y(1)-receptor (Y(1)R) in DRG neurons. Animals were subjected to a sciatic nerve SLNC either alone or followed by the administration of MSCs, phosphate-buffered saline (PBS) or bone marrow non-adherent mononuclear cells (BNMCs), directly into the ipsilateral L4 DRG. Seven days after injury, the ipsilateral and contralateral L4-5 DRGs were dissected out and processed for standard immunohistochemistry, using specific antibodies. As previously reported, SLNC induced an ipsilateral increase in the number of galanin and NPY immunoreactive neurons and a decrease in Y(1)R-positive DRG neurons. The intraganglionic injection of PBS or BNMCs did not modify this pattern of expression. In contrast, MSC administration partially prevented the injury-induced changes in galanin, NPY and Y(1)R expression. The large number of Y(1)R-immunoreactive neurons together with high levels of NPY expression in animals injected with MSCs could explain, at least in part, the analgesic effects exerted by these cells. Our results support MSC participation in the modulation of neuropathic pain and give insight into one of the possible mechanisms involved.


Subject(s)
Galanin/biosynthesis , Neuropeptide Y/biosynthesis , Receptors, Neuropeptide Y/biosynthesis , Sciatic Nerve/injuries , Stromal Cells/physiology , Animals , Bone Marrow Cells , Constriction, Pathologic/metabolism , Rats , Sciatic Neuropathy , Stem Cell Transplantation , Treatment Outcome , Wounds and Injuries/metabolism
5.
Neuroscience ; 147(2): 469-90, 2007 Jun 29.
Article in English | MEDLINE | ID: mdl-17577523

ABSTRACT

The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and vesicular transport of glutamate. J Comp Neurol 483:1-16], we speculate that virtually all DRG neurons in adult mouse express VGLUTs and use glutamate as transmitter.


Subject(s)
Ganglia, Spinal/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Vesicular Glutamate Transport Protein 1/biosynthesis , Vesicular Glutamate Transport Protein 2/biosynthesis , Animals , Axotomy , Fluorescent Antibody Technique , Glycoproteins/metabolism , Image Processing, Computer-Assisted , Immunohistochemistry , Male , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Nerve Crush , Neuronal Plasticity/physiology , Rhizotomy , Sciatic Nerve/injuries , Skin/pathology , Ubiquitin Thiolesterase/metabolism
6.
Neuroscience ; 138(4): 1361-76, 2006.
Article in English | MEDLINE | ID: mdl-16448775

ABSTRACT

The localization of the neuropeptide tyrosine Y1 receptor was studied with immunohistochemistry in parasagittal and transverse, free-floating sections of the rat lumbar spinal cord. At least seven distinct Y1 receptor-positive populations could tentatively be recognized: Type 1) abundant small, fusiform Y1 receptor-positive neurons in laminae I-II, producing a profuse neuropil; Type 2) Y1 receptor-positive projection neurons in lamina I; Type 3) small Y1 receptor-positive neurons in lamina III, similar to Type 1 neurons, but less densely packed; Type 4) a number of large, multipolar Y1 receptor-positive neurons in the border area between laminae III-IV, with dendrites projecting toward laminae I-II; Type 5) a considerable number of large, multipolar Y1 receptor-positive neurons in laminae V-VI; Type 6) many large Y1 receptor-positive neurons around the central canal (area X); and Type 7) a small number of large Y1 receptor-positive neurons in the medial aspect of the ventral horns (lamina VIII). Many of the neurons present in laminae V-VI and area X produce craniocaudal processes extending for several hundred micrometers. Retrograde tracing using cholera toxin B subunit injected at the 9th thoracic spinal cord level shows that several Type 5 neurons in laminae V-VI, and at least a few Type 2 in lamina I and Type 6 in area X have projections extending to the lower segments of the thoracic spinal cord (and perhaps to supraspinal levels). The present results define distinct subpopulations of neuropeptide tyrosine-sensitive neurons, localized in superficial and deep layers of the dorsal, in the ventral horns and in area X. The lamina II neurons express somatostatin [The neuropeptide Y Y1 receptor is a somatic receptor on dorsal root ganglion neurons and a postsynaptic receptor on somatostatin dorsal horn neurons. Eur J Neurosci 11:2211-2225] and are presumably glutamatergic [Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17:13-27], that is they are excitatory interneurons under a Y1 receptor-mediated inhibitory influence. The remaining Y1 receptor-positive spinal neurons need to be phenotyped, for example if the large Y1 receptor-positive laminae III-IV neurons (Type 5) are identical to the neurokinin (NK)1R-positive neurons previously shown to receive neuropeptide tyrosine positive dendritic contacts [Polgár E, Shehab SA, Watt C, Todd AJ (1999) GABAergic neurons that contain neuropeptide Y selectively target cells with the NK1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 19:2637-2646]. If so, neuropeptide tyrosine could have an antinociceptive action not only via Y1 receptor-positive interneurons (Type 1) but also projection neurons. The present results show neuropeptide tyrosine-sensitive neuron populations virtually in all parts of the lumbar spinal cord, suggesting a role for neuropeptide tyrosine signaling in many spinal functions, including pain.


Subject(s)
Interneurons/metabolism , Neural Pathways/metabolism , Neuropeptide Y/metabolism , Posterior Horn Cells/metabolism , Receptors, Neuropeptide Y/metabolism , Animals , Calcitonin Gene-Related Peptide/metabolism , Cell Shape/physiology , Cholera Toxin/metabolism , Dendrites/metabolism , Dendrites/ultrastructure , Immunohistochemistry/methods , Interneurons/cytology , Male , Neural Pathways/cytology , Neuropeptides/metabolism , Neuropil/metabolism , Neuropil/ultrastructure , Neurotransmitter Agents/metabolism , Pain/metabolism , Pain/physiopathology , Posterior Horn Cells/cytology , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Rats , Rats, Sprague-Dawley , Tyrosine/metabolism , Tyrosine/pharmacology
7.
Neuroscience ; 133(1): 59-77, 2005.
Article in English | MEDLINE | ID: mdl-15893631

ABSTRACT

In most parts of the peripheral nervous system galanin is expressed at very low levels. To further understand the functional role of galanin, a mouse overexpressing galanin under the platelet-derived growth factor-B was generated, and high levels of galanin expression were observed in several peripheral tissues and spinal cord. Thus, a large proportion of neurons in autonomic and sensory ganglia were galanin-positive, as were most spinal motor neurons. Strong galanin-like immunoreactivity was also seen in nerve terminals in the corresponding target tissues, including skin, blood vessels, sweat and salivary glands, motor end-plates and the gray matter of the spinal cord. In transgenic superior cervical ganglia around half of all neuron profiles expressed galanin mRNA but axotomy did not cause a further increase, even if mRNA levels were increased in individual neurons. In transgenic dorsal root ganglia galanin mRNA was detected in around two thirds of all neuron profiles, including large ones, and after axotomy the percentage of galanin neuron profiles was similar in overexpressing and wild type mice. Axotomy reduced the total number of DRG neurons less in overexpressing than in wild type mice, indicating a modest rescue effect. Aging by itself increased galanin expression in the superior cervical ganglion in wild type and transgenic mice, and in the latter also in preganglionic cholinergic neurons projecting to the superior cervical ganglion. Galanin overexpressing mice showed an attenuated plasma extravasation, an increased pain response in the formalin test, and changes in muscle physiology, but did not differ from wild type mice in sudomotor function. These findings suggest that overexpressed galanin in some tissues of these mice can be released and via a receptor-mediated action influence pathophysiological processes.


Subject(s)
Galanin/biosynthesis , Galanin/genetics , Adrenal Glands/metabolism , Aging/physiology , Animals , Blotting, Southern , Capillary Permeability/genetics , Capillary Permeability/physiology , Chromatography, High Pressure Liquid , DNA/biosynthesis , DNA/genetics , Ganglia, Sensory/metabolism , Ganglia, Sympathetic/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Endplate/metabolism , Muscle, Skeletal/metabolism , Nerve Fibers/metabolism , Neurons, Afferent/metabolism , Pain Measurement/drug effects , Phenotype , Proto-Oncogene Proteins c-sis/metabolism , Radioimmunoassay , Skin/metabolism , Spinal Cord/metabolism , Sweating/genetics , Sweating/physiology
8.
Neuropeptides ; 39(3): 223-31, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15893817

ABSTRACT

The 29/30 amino acid neuropeptide galanin is present in a small population of DRG neurons under normal condition but is strongly upregulated after nerve injury. There is evidence that this upregulated galanin has trophic actions, for example promoting neurite outgrowth as well as influencing pain processing. In fact, both pro- and antinociceptive effects have been reported, probably relating to activation of different receptors. It has been proposed that presynaptic GalR2 receptors are pro-nociceptive by enhancing release of excitatory transmitters in the dorsal horn, and anti-nociceptive via an action on GalR1-positive interneurons. These neurons have recently been shown to be glutamatergic. Several other peptides and molecules are also regulated by nerve injury. Here we focus on neuropeptide tyrosine (NPY), which is upregulated in parallel with galanin. We review data reporting on coexistence between galanin and NPY and between these two peptides and the two NPY receptors Y1 and Y2. The data show considerable overlap, and it will be an important task to analyse how cross-talk between these neuropeptides can influence pain processing. It is proposed that such cross-talk can occur by release of peptides from DRGs neuron somata within dorsal root ganglia. To what extent these mechanisms shown to exist in rodents also occur in human is important, if one wants to discuss novel strategies for pain treatment on the basis of these findings. So far information is limited, but it has been demonstrated that galanin is expressed in DRGs and possibly also regulated.


Subject(s)
Galanin/physiology , Ganglia, Spinal/physiology , Neuralgia/physiopathology , Receptors, Galanin/physiology , Spinal Cord/physiology , Animals , Ganglia, Spinal/cytology , Humans , Immunohistochemistry , Phenotype , Spinal Cord/cytology
9.
Brain Res ; 1006(1): 87-99, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15047027

ABSTRACT

In the present study, the rat sciatic nerve was constricted to varying degrees using only one ligature with a very thin polyethylene sheath placed between nerve and ligature thread. Complete nerve transection was studied for comparison. With a 40-80% constriction of the nerve we observed allodynia to a similar extent as in the so-called Bennett model based on four loose ligatures. We also monitored changes in the expression of neuropeptide Y (NPY) and the NPY Y1 receptor (Y1R) in the lumbar 4-5 dorsal root ganglia (DRG) and dorsal horn and found upregulation of NPY and downregulation of the Y1R in DRG neurons after injury. These results indicate that similar peptide and receptor changes occur in this model as after axotomy and in other nerve injury models, although the immunohistochemical and behavioral changes seem to be dependent on the degree of constriction of the nerve. Thus, it seems relevant to monitor the degree of constriction when evaluating pain and other post-injury events. The possibility that some of the changes in NPY-ergic neurotransmission are related to the generation of allodynia is discussed; as well as the possibility to use this mononeuropathic model based on a single ligature nerve constriction (SLNC) as a complementary approach to other widely used pain models.


Subject(s)
Ganglia, Spinal/cytology , Neurons/metabolism , Neuropeptide Y/metabolism , Pain/physiopathology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Sciatic Neuropathy/physiopathology , Spinal Cord/metabolism , Animals , Behavior, Animal , Cell Count/methods , Functional Laterality/physiology , Immunohistochemistry/methods , Ligation/methods , Male , Pain/metabolism , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology , Time Factors
10.
Proc Natl Acad Sci U S A ; 98(17): 9960-4, 2001 Aug 14.
Article in English | MEDLINE | ID: mdl-11481429

ABSTRACT

Galanin is a 29-aa neuropeptide with a complex role in pain processing. Several galanin receptor subtypes are present in dorsal root ganglia and spinal cord with a differential distribution. Here, we describe a generation of a specific galanin R2 (GalR2) agonist, AR-M1896, and its application in studies of a rat neuropathic pain model (Bennett). The results show that in normal rats mechanical and cold allodynia of the hindpaw are induced after intrathecal infusion of low-dose galanin (25 ng per 0.5 microl/h). The same effect is seen with equimolar doses of AR-M1896 or AR-M961, an agonist both at GalR1 and GalR2 receptors. In allodynic Bennett model rats, the mechanical threshold increased dose-dependently after intrathecal injection of a high dose of AR-M961, whereas no effect was observed in the control or AR-M1896 group. No effect of either of the two compounds was observed in nonallodynic Bennett model rats. These data indicate that a low dose of galanin has a nociceptive role at the spinal cord level mediated by GalR2 receptors, whereas the antiallodynic effect of high-dose galanin on neuropathic pain is mediated by the GalR1 receptors. Thus, a selective GalR1 agonist may be used to treat neuropathic pain.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Causalgia/physiopathology , Galanin/pharmacology , Galanin/physiology , Hyperesthesia/physiopathology , Nerve Tissue Proteins/physiology , Peptide Fragments/pharmacology , Protein Isoforms/physiology , Receptors, Neuropeptide/physiology , Sciatica/physiopathology , Spinal Cord/physiopathology , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/pharmacology , Animals , Causalgia/chemically induced , Causalgia/drug therapy , Cold Temperature/adverse effects , Dose-Response Relationship, Drug , Galanin/administration & dosage , Galanin/chemistry , Galanin/therapeutic use , Galanin/toxicity , Ganglia, Spinal/chemistry , Ganglia, Spinal/drug effects , Hindlimb/innervation , Hyperesthesia/chemically induced , Hyperesthesia/drug therapy , Hyperesthesia/etiology , Infusion Pumps, Implantable , Male , Models, Animal , Nerve Tissue Proteins/agonists , Pain Threshold/drug effects , Peptide Fragments/chemistry , Protein Isoforms/agonists , Rats , Rats, Sprague-Dawley , Receptors, Galanin , Receptors, Neuropeptide/agonists , Sciatic Nerve/injuries , Sciatica/drug therapy , Sciatica/etiology , Spinal Cord/chemistry , Stress, Mechanical , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...