Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38977647

ABSTRACT

The mechanism behind hemodialysis arteriovenous fistula (AVF) failure remains poorly understood, despite previous efforts to correlate altered hemodynamics with vascular remodeling. We have recently demonstrated that transitional flow induces high-frequency vibrations in the AVF wall, albeit with a simplified model. This study addresses the key limitations of our original fluid-structure interaction (FSI) approach, aiming to evaluate the vibration response using a more realistic model. A 3D AVF geometry was generated from contrast-free MRI and high-fidelity FSI simulations were performed. Patient-specific inflow and pressure were incorporated, and a three-term Mooney-Rivlin model was fitted using experimental data. The viscoelastic effect of perivascular tissue was modeled with Robin boundary conditions. Prescribing pulsatile inflow and pressure resulted in a substantial increase in vein displacement ( + 400 %) and strain ( + 317 %), with a higher maximum spectral frequency becoming visible above -42 dB (from 200 to 500 Hz). Transitioning from Saint Venant-Kirchhoff to Mooney-Rivlin model led to displacement amplitudes exceeding 10 micrometers and had a substantial impact on strain ( + 116 %). Robin boundary conditions significantly damped high-frequency displacement ( - 60 %). Incorporating venous tissue properties increased vibrations by 91%, extending up to 700 Hz, with a maximum strain of 0.158. Notably, our results show localized, high levels of vibration at the inner curvature of the vein, a site known for experiencing pronounced remodeling. Our findings, consistent with experimental and clinical reports of bruits and thrills, underscore the significance of incorporating physiologically plausible modeling approaches to investigate the role of wall vibrations in AVF remodeling and failure.

3.
Commun Med (Lond) ; 3(1): 163, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945799

ABSTRACT

BACKGROUND: Since the 1960s, the origins of intracranial aneurysm bruits and musical murmurs have been debated, with proposed mechanisms ranging from self-excitation (i.e., resonance) by stable pulsatile flow, to vibration caused by unstable (laminar vortex shedding or turbulent) flow. This knowledge gap has impeded the use of intracranial sounds a marker of aneurysm remodelling or rupture risk. New computational techniques now allow us to model these phenomena. METHODS: We performed high-fidelity fluid-structure interaction simulations capable of understanding the magnitude and mechanisms of such flow-induced vibrations, under pulsatile flow conditions. Six cases from a previous cohort were used. RESULTS: In five cases, underlying flow instabilities present as broad-band, random vibrations, consistent with previously-described bruits, while the sac also exhibits resonance, rocking back and forth in different planes of motion, consistent with previously described musical murmurs. Both types of vibration have amplitudes in the range of 0.1 to 1 µm. The murmurs extend into diastole, after the underlying flow instability has dissipated, and do not exhibit the characteristic repeating frequency harmonics of previously hypothesized vortex-shedding mechanisms. The remaining case with stable pulsatile flow does not vibrate. Spectrograms of the simulated vibrations are consistent with previously reported microphone and Doppler ultrasound recordings. CONCLUSIONS: Our results provide a plausible explanation for distinct intracranial aneurysm sounds and characterize the mechanical environment of a vibrating aneurysm wall. Future work should aim to quantify the deleterious effects of these overlooked stimuli on the vascular wall, to determine which changes to the wall makeup are associated with vibration.


Brain aneurysms are weak areas of an artery in the brain that form a bulge. Most aneurysms do not rupture, but when they do, most patients die or are severely disabled. Unruptured aneurysms are often found by chance, but the risk of complications from treating them can be higher than the risk of rupture. Aneurysms are known to produce sounds, but the connection between the sounds and the resulting vibrations that may further weaken the artery wall are poorly understood. In this study, we modelled the possible vibration of aneurysm walls during turbulent blood flow. The frequency patterns of the vibrations were consistent with sound recordings obtained from patients. Our findings could enable potentially problematic aneurysms to be more easily identified in the future.

4.
Biomech Model Mechanobiol ; 22(3): 761-771, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36864365

ABSTRACT

Clinical, experimental, and recent computational studies have demonstrated the presence of wall vibrations in cerebral aneurysms, thought to be induced by blood flow instability. These vibrations could induce irregular, high-rate deformation of the aneurysm wall, and potentially disrupt regular cell behavior and promote deleterious wall remodeling. In order to elucidate, for the first time, the onset and nature of such flow-induced vibrations, in this study we imposed a linearly increasing flow rate on high-fidelity fluid-structure interaction models of three anatomically realistic aneurysm geometries. Prominent narrow-band vibrations in the range of 100-500 Hz were found in two out of the three aneurysm geometries tested, while the case that did not exhibit flow instability did not vibrate. Aneurysm vibrations consisted mostly of fundamental modes of the entire aneurysm sac, with the vibrations exhibiting more frequency content at higher frequencies than the flow instabilities driving those vibrations. The largest vibrations occurred in the case which exhibited strongly banded fluid frequency content, and the vibration amplitude was highest when the strongest fluid frequency band was an integer multiple of one of the natural frequencies of the aneurysm sac. Lower levels of vibration occurred in the case which exhibited turbulent-like flow with no distinct frequency bands. The current study provides a plausible mechanistic explanation for the high-frequency sounds observed in cerebral aneurysms, and suggests that narrow-band (vortex-shedding type) flow might stimulate the wall more, or at least at lower flow rates, than broad-band, turbulent-like flow.


Subject(s)
Intracranial Aneurysm , Humans , Vibration , Hemodynamics , Sound , Models, Cardiovascular
5.
J Mech Behav Biomed Mater ; 115: 104299, 2021 03.
Article in English | MEDLINE | ID: mdl-33465751

ABSTRACT

Computational human body models (HBM) present a novel approach to predict brain response in football impact scenarios, with prescribed kinematic boundary conditions for the HBM skull typically used at present. However, computational optimization of helmets requires simulation of the coupled helmet and HBM model; which is much more complex and has not been assessed in the context of brain deformation and existing simplified approaches. In the current study, two boundary conditions and the resulting brain deformations were compared using a HBM head model: (1) a prescribed skull kinematics (PK) boundary condition using measured head kinematics from experimental impacts; and (2) a novel detailed simulation of a HBM head and neck, helmet and linear impactor (HBM-S). While lateral and rear impacts exhibited similar levels of maximum principal strain (MPS) in the brain tissue using both boundary conditions, differences were noted in the frontal orientation (at 9.3 m/s, MPS was 0.39 for PK, 0.54 for HBM-S). Importantly, both PK and HBM-S boundary conditions produced a similar distribution of MPS throughout the brain for each impact orientation considered. Within the corpus callosum and thalamus, high MPS was associated with lateral impacts and lower values with frontal and rear impacts. The good correspondence of both boundary conditions is encouraging for future optimization of helmet designs. A limitation of the PK approach is the need for experimental head kinematics data, while the HBM-S can predict brain response for varying impact conditions and helmet configurations, with potential as a tool to improve helmet protection performance.


Subject(s)
Brain Concussion , Football , Acceleration , Biomechanical Phenomena , Brain , Head , Head Protective Devices , Humans , Skull
6.
J Biomech Eng ; 142(2)2020 02 01.
Article in English | MEDLINE | ID: mdl-31053858

ABSTRACT

It has been proposed that neck muscle activation may play a role in head response resulting from impacts in American Football. The importance of neck stiffness and active musculature in the standard linear impactor helmet test was assessed using a detailed head and neck finite element (FE) model from a current human body model (HBM) compared to a validated hybrid III head and neck FE model. The models were assessed for bare-head and helmeted impacts at three speeds (5.5, 7.4, and 9.3 m/s) and three impact orientations. The HBM head and neck was assessed without muscle activation and with a high level of muscle activation representing a braced condition. The HBM and hybrid III had an average cross-correlation rating of 0.89 for acceleration in the primary impact direction, indicating excellent correspondence regardless of muscle activation. Differences were identified in the axial head acceleration, attributed to axial neck stiffness (correlation rating of 0.45), but these differences did not have a large effect on the overall head response using existing head response metrics (head injury criteria, brain injury criteria, and head impact power). Although responses that develop over longer durations following the impact differed slightly, such as the moment at the base of the neck, this occurred later in time, and therefore, did not considerably affect the short-term head kinematics in the primary impact direction. Though muscle activation did not play a strong role in the head response for the test configurations considered, muscle activation may play a role in longer duration events.


Subject(s)
Brain Concussion , Finite Element Analysis , Head Protective Devices , Acceleration , Football
SELECTION OF CITATIONS
SEARCH DETAIL
...