Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 41(8): 1384-1399, 2021 08 11.
Article in English | MEDLINE | ID: mdl-33554260

ABSTRACT

Knowledge on variations of drought resistance traits are needed to predict the potential of trees to acclimate to coming severe drought events. Xylem vulnerability to embolism is a key parameter related to such droughts, and its phenotypic variability relies mainly on environmental plasticity. We investigated the structural determinants controlling the plasticity of vulnerability to embolism, focusing on the key elements involved in the air bubble entry in vessels, especially the intervessel pits. Poplar saplings (Populus tremula x alba (Aiton) Sm., 1804) grown in contrasted water availability or light exposure exhibited differences in the vulnerability to embolism (P50) in a range of 0.76 MPa. We then characterized the structural changes in features related to pit quantity and pit structure, from the pit ultrastructure to the organization of xylem vessels, using different microscopy techniques (transmission electron microscopy, scanning electron microscopy, light microscopy). A multispectral combination of X-ray microtomography and light microscopy analysis allowed measuring the vulnerability of each single vessel and testing some of the relationships between structural traits and vulnerability to embolism inside the xylem. The pit ultrastructure did not change, whereas the vessel dimensions increased with the vulnerability to embolism and the grouping index and fraction of intervessel cell wall both decreased with the vulnerability to embolism. These findings hold when comparing between trees or between the vessels inside the xylem of an individual tree. These results evidenced that plasticity of vulnerability to embolism in hybrid poplar occurs through changes in the pit quantity properties such as pit area and vessel grouping rather than changes on the pit structure.


Subject(s)
Embolism , Populus , Cell Wall , Droughts , Water , Xylem
2.
Ann Bot ; 121(6): 1151-1161, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29373642

ABSTRACT

Background and Aims: Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Methods: Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. Key Results: In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. Conclusions: This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.


Subject(s)
Flexural Strength , Wood , Compressive Strength , Plant Stems/anatomy & histology , Plant Stems/physiology , Populus/anatomy & histology , Populus/physiology , Tensile Strength , Wood/anatomy & histology , Wood/physiology
3.
Plant Mol Biol ; 91(4-5): 375-96, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27068521

ABSTRACT

X-Intrinsic Proteins (XIP) were recently identified in a narrow range of plants as a full clade within the aquaporins. These channels reportedly facilitate the transport of a wide range of hydrophobic solutes. The functional roles of XIP in planta remain poorly identified. In this study, we found three XIP genes (HbXIP1;1, HbXIP2;1 and HbXIP3;1) in the Hevea brasiliensis genome. Comprehensive bioinformatics, biochemical and structural analyses were used to acquire a better understanding of this AQP subfamily. Phylogenetic analysis revealed that HbXIPs clustered into two major groups, each distributed in a specific lineage of the order Malpighiales. Tissue-specific expression profiles showed that only HbXIP2;1 was expressed in all the vegetative tissues tested (leaves, stem, bark, xylem and latex), suggesting that HbXIP2;1 could take part in a wide range of cellular processes. This is particularly relevant to the rubber-producing laticiferous system, where this isoform was found to be up-regulated during tapping and ethylene treatments. Furthermore, the XIP transcriptional pattern is significantly correlated to latex production level. Structural comparison with SoPIP2;1 from Spinacia oleracea species provides new insights into the possible role of structural checkpoints by which HbXIP2;1 ensures glycerol transfer across the membrane. From these results, we discuss the physiological involvement of glycerol and HbXIP2;1 in water homeostasis and carbon stream of challenged laticifers. The characterization of HbXIP2;1 during rubber tree tapping lends new insights into molecular and physiological response processes of laticifer metabolism in the context of latex exploitation.


Subject(s)
Aquaporins/chemistry , Aquaporins/genetics , Genome, Plant , Hevea/genetics , Latex/biosynthesis , Plant Proteins/genetics , Aquaporins/isolation & purification , Computational Biology , Gene Expression Regulation, Plant , Models, Molecular , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Structural Homology, Protein , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...