Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 229: 197-207, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33656030

ABSTRACT

Palladium-based catalysts are exploited on an industrial scale for the selective hydrogenation of hydrocarbons. The formation of palladium carbide and hydride phases under reaction conditions changes the catalytic properties of the material, which points to the importance of operando characterization for determining the relation between the relative fractions of the two phases and the catalyst performance. We present a combined time-resolved characterization by X-ray absorption spectroscopy (in both near-edge and extended regions) and X-ray diffraction of a working palladium-based catalyst during the hydrogenation of ethylene in a wide range of partial pressures of ethylene and hydrogen. Synergistic coupling of multiple techniques allowed us to follow the structural evolution of the palladium lattice as well as the transitions between the metallic, hydride and carbide phases of palladium. The nanometric dimensions of the particles resulted in the considerable contribution of both surface and bulk carbides to the X-ray absorption spectra. During the reaction, palladium carbide is formed, which does not lead to a loss of activity. Unusual contraction of the unit cell parameter of the palladium lattice in the spent catalyst was observed upon increasing hydrogen partial pressure.

2.
Inorg Chem ; 59(13): 9434-9442, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32579352

ABSTRACT

Depending on the synthesis route, the oxygen ion electrolyte Sr2ScGaO5 shows two polymorphs, a brownmillerite and a cubic perovskite framework. In order to better explore oxygen diffusion pathways and mechanisms, we report here on a multitechnical approach to characterize local structural changes for Sr2ScGaO5 polymorphs as a function of temperature, using a neutron pair distribution function (PDF) analysis together with an extended X-ray absorption fine structure (EXAFS) analysis. While for the brownmillerite type structure PDF and Rietveld refinements yield identical structural descriptions, considerable differences are found for the cubic oxygen-deficient polymorph. On a local scale a brownmillerite type vacancy structure could be evidenced for the cubic phase, suggesting a complex short-range ordering and respective microstructure. Both PDF and EXAFS data confirm an octahedral and tetrahedral coordination for Sc and Ga, respectively, at a local scale for both polymorphs. Related changes in the bond distances and oxygen vacancy ordering are discussed.

3.
Inorg Chem ; 57(2): 879-891, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29280608

ABSTRACT

The structure evolution in the CeO2-Sm2O3 system is revisited by combining high resolution synchrotron powder diffraction with pair distribution function (PDF) to inquire about local, mesoscopic, and average structure. The CeO2 fluorite structure undergoes two phase transformations by Sm doping, first to a cubic (C-type) and then to a monoclinic (B-type) phase. Whereas the C to B-phase separation occurs completely and on a long-range scale, no miscibility gap is detected between fluorite and C-type phases. The transformation rather occurs by growth of C-type nanodomains embedded in the fluorite matrix, without any long-range phase separation. A side effect of this mechanism is the ordering of the oxygen vacancies, which is detrimental for the application of doped ceria as an electrolyte in fuel cells. The results are discussed in the framework of other Y and Gd dopants, and the relationship between nanostructuring and the above equilibria is also investigated.

4.
Phys Rev Lett ; 116(19): 197204, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27232042

ABSTRACT

We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

5.
IUCrJ ; 2(Pt 5): 490-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26306191

ABSTRACT

The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S)-9-methylpentacosane, C26H54; (S)-9-methylheptacosane and (S)-11-methylheptacosane, C28H58; (S)-7-methylnonacosane, (S)-9-methylnonacosane, (S)-11-methylnonacosane and (S)-13-methylnonacosane, C30H62; and (S)-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

6.
IUCrJ ; 2(Pt 5): 511-22, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26306193

ABSTRACT

A new hierarchical approach is presented for elucidating the structural disorder in Ce1-x Gd x O2-x/2 solid solutions on different scale lengths. The primary goal of this investigation is to shed light on the relations between the short-range and the average structure of these materials via an analysis of disorder on the mesocopic scale. Real-space (pair distribution function) and reciprocal-space (Rietveld refinement and microstructure probing) analysis of X-ray powder diffraction data and electron spin resonance (ESR) investigations were carried out following this approach. On the local scale, Gd- and Ce-rich droplets (i.e. small regions a few ångströms wide) form, exhibiting either a distorted fluorite (CeO2) or a C-type (Gd2O3) structure in the whole compositional range. These droplets can then form C-type nanodomains which, for Gd concentrations x Gd ≤ 0.25, are embedded in the fluorite matrix. At the site percolation threshold p C for a cubic lattice (x Gd = p C ≃ 0.311), C-type nanodomains percolate inside each crystallite and a structural phase transformation is observed. When this occurs, the peak-to-peak ESR line width ΔH pp shows a step-like behaviour, which can be associated with the increase in Gd-Gd dipolar interactions. A general crystallographic rationale is presented to explain the fluorite-to-C-type phase transformation. The approach shown here could be adopted more generally in the analysis of disorder in other highly doped materials.

7.
Phys Chem Chem Phys ; 15(29): 12139-46, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23674125

ABSTRACT

LiH is a highly stable light metal hydride with a hydrogen capacity of 12.5 wt%. However, having a dehydrogenation enthalpy, ΔH(dehy), of 181.2 kJ mol(-1)(H2) and a resultant T(1 bar) of 944 °C, it is not a practical hydride for most hydrogen storage applications. In the work presented here, germanium has been found to dramatically reduce the dehydrogenation temperature for LiH down to just 270 °C. The enthalpy of dehydrogenation was reduced through the formation of lithium germanides. The reaction pathway was identified in this study using in situ powder neutron diffraction, showing the successive formation of more Li-rich germanides, following the series: LiGe, Li4Ge2H, Li9Ge4, and Li7Ge2. The enthalpy of formation for these germanides provides the thermodynamic tuning to reduce the ΔH(dehy) for the system. The 3LiH-Ge system investigated is found to be reversible with a maximum capacity of 3.0 ± 0.1 wt%.

9.
Phys Chem Chem Phys ; 15(22): 8495-505, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23403753

ABSTRACT

Doped ceria materials are widely studied for their application in solid oxide fuel cell devices. In this work we report on the average and local structure evolution of La-doped ceria (Ce(1-x)La(x)O(2-x/2), x = 0.25) under fuel cells' operating conditions. The effect of doping on the average structure is investigated using conventional Rietveld analysis of neutron powder diffraction data. The extent of disorder as well as the local structure evolution at high temperature are investigated by employing very hard X-rays under both air and reducing atmosphere.

10.
Langmuir ; 28(22): 8511-7, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22568745

ABSTRACT

The inclusion properties of a calixarene-based porous material have been studied to investigate the adsorption and the desorption of carbon tetrachloride, chloroform, and water in the zeolite-like structure. Uptake and release processes have been studied both by time-resolved powder X-ray diffraction and by thermogravimetric analysis to obtain structural and kinetic information. The selected guests are able to enter the structure with an increase in the host cell volume and with time-dependent diffusivity coefficients. Chloroform molecules act as a permanent porosity switch promoting a phase transition to non-porous triclinic form.

11.
Phys Chem Chem Phys ; 14(1): 311-7, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22083106

ABSTRACT

The adsorption properties of a new nanoporous organic zeolite with respect to acetylene and Ar were studied by volumetric adsorption analysis, microcalorimetric experiments, and synchrotron high-resolution X-ray powder diffraction. This allowed us to locate the guest molecules inside the host channels and characterize the host-guest interactions.

12.
Inorg Chem ; 50(3): 1116-22, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21190329

ABSTRACT

Magnesium imide (MgNH) was produced by monitoring the decomposition process of magnesium amide with in situ neutron diffraction. Significant changes in the structure of magnesium amide are detected during heat treatment and eventually result in the formation of crystalline MgNH. A model for the crystal structure of magnesium imide (MgNH) is presented for the first time. Remarkably, magnesium imide offers unique structural features similar to the cyclosilicate class and can be described as a porous solid formed by a sequence of linked chains of face sharing Mg(6)N(6) hexagonal prism clusters.

15.
J Am Chem Soc ; 132(6): 2064-8, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20102192

ABSTRACT

We report here on the preparation and characterization of a fullerenium salt in the solid state, where the fullerene is in the 2+ oxidized state. To succeed in this long-standing challenge, we exploit the oxidizing power of one of the strongest Lewis acids, AsF(5). The weak nucleophilic character of its conjugate base is essential in stabilizing the fullerene dication in a crystal lattice. High-resolution structural analysis of this compound, with the formula C(60)(AsF(6))(2), indicates that the highly reactive C(60)(2+) units are arranged according to a novel 1D "zigzag" polymer structure. The molecules are connected by an alternating sequence of four-membered carbon rings ([2 + 2] cycloaddition) and single C-C bonds. The long awaited high-T(c) superconductivity and magnetism, expected in a hole-doped C(60) compound, are replaced instead by a semiconducting behavior, quite probably originating from the reduced crystal and molecular symmetry upon polymerization. The small value of the energy gap (approximately 70 meV) suggests, nevertheless, the proximity of a metallic phase.

16.
Acta Crystallogr B ; 65(Pt 6): 724-30, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19923701

ABSTRACT

The (S)-4-alkoxo-2-azetidinecarboxylic acids are optically active beta-lactam derivatives of aspartic acid, which are used as precursors of carbapenem-type antibiotics and poly-beta-aspartates. The crystal structures of three (S)-4-alkoxo-2-azetidinecarboxylic acids with alkyl chains with 10, 12 and 16 C atoms were solved using parallel tempering and refined against the X-ray powder diffraction data using the Rietveld method. The azetidinone rings in the three compounds display a pattern of asymmetrical bond distances and an almost planar conformation; these characteristics are compared with periodic solid-state, gas-phase density-functional theory (DFT) calculations and MOGUL average bond distances and angles from the CSD. The compounds pack along [001] as corrugated sheets separated by approximately 4.40 A and connected by hydrogen bonds of the type N-H...O.

17.
J Am Chem Soc ; 131(37): 13230-1, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19722490

ABSTRACT

The structure of Se particles in the approximately 13 A diameter alpha-cages of zeolite NdY has been determined by Rietveld refinement and pair distribution function (PDF) analysis of X-ray data. With the diffuse scattering subtracted an average structure comprised of an undistorted framework containing nanoclusters of 20 Se atoms is observed. The intracluster correlations and the cluster-framework correlations which give rise to diffuse scattering were modeled by using PDF analysis.

18.
Acta Crystallogr B ; 65(Pt 5): 639-46, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19767686

ABSTRACT

The molecular and crystalline structure of ethyl 1',2',3',4',4a',5',6',7'-octahydrodispiro[cyclohexane-1,2'-quinazoline-4',1''-cyclohexane]-8'-carbodithioate (I) was solved and refined from powder synchrotron X-ray diffraction data. The initial model for the structural solution in direct space using the simulated annealing algorithm implemented in DASH [David et al. (2006). J. Appl. Cryst. 39, 910-915] was obtained performing a conformational study on the fused six-membered rings of the octahydroquinazoline system and the two spiran cyclohexane rings of (I). The best model was chosen using experimental evidence from 1H and 13C NMR [Contreras et al. (2001). J. Heterocycl. Chem. 38, 1223-1225] in combination with semi-empirical AM1 calculations. In the refined structure the two spiran rings have the chair conformation, while both of the fused rings in the octahydroquinazoline system have half-chair conformations compared with in-vacuum density-functional theory (DFT) B3LYP/6-311G*, DFTB (density-functional tight-binding) theoretical calculations in the solid state and other related structures from X-ray diffraction data. Compound (I) presents weak intramolecular hydrogen bonds of the type N-H...S and C-H...S, which produce delocalization of the electron density in the generated rings described by graph symbols S(6) and S(5). Packing of the molecules is dominated by van der Waals interactions.


Subject(s)
Cyclohexanes/chemistry , Quinazolines/chemistry , Spiro Compounds/chemistry , Crystallography, X-Ray , Electrochemistry , Hydrogen Bonding , Ligands , Molecular Conformation , Powder Diffraction , Synchrotrons
19.
Acta Crystallogr C ; 65(Pt 6): o278-80, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19498236

ABSTRACT

The title compound, C(10)H(18), a decalin stereoisomer, crystallizes with Z' = 0.5 in the space group P2(1)/n. The trans-decalin molecule is located on an inversion centre with both rings in a chair conformation, making for a quasi-flat overall shape. Despite the absence of hydrogen bonds, it crystallizes easily. In this work the unknown crystal structure of trans-decalin has been solved and refined using X-ray powder diffraction data.

20.
Acta Crystallogr B ; 65(Pt 2): 189-99, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19299875

ABSTRACT

The crystal structure of the nanocrystalline alpha phase of Pigment Yellow 213 (P.Y. 213) was solved by a combination of single-crystal electron diffraction and X-ray powder diffraction, despite the poor crystallinity of the material. The molecules form an efficient dense packing, which explains the observed insolubility and weather fastness of the pigment. The pair-distribution function (PDF) of the alpha phase is consistent with the determined crystal structure. The beta phase of P.Y. 213 shows even lower crystal quality, so extracting any structural information directly from the diffraction data is not possible. PDF analysis indicates the beta phase to have a columnar structure with a similar local structure as the alpha phase and a domain size in column direction of approximately 4 nm.


Subject(s)
Aza Compounds/chemistry , Coloring Agents/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Aza Compounds/chemical synthesis , Coloring Agents/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Microscopy, Electron, Transmission , Models, Molecular , Molecular Conformation , Particle Size , Powder Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...