Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 58(5): 465-476, 2023.
Article in English | MEDLINE | ID: mdl-37349885

ABSTRACT

Glyphosate application, even in low doses, changes the metabolism of crops. This research aimed to evaluate the effects of glyphosate low doses and sowing season on metabolic changes of early-cycle common beans. Two experiments were conducted in the field, one in the winter season and one in the wet season. The experimental design was a randomized complete block design consisting of the application of glyphosate low doses [0.0, 1.8, 7.2, 12.0, 36.0, 54.0, and 108.0 g acid equivalent (a.e.) ha-1] in the phenological stage V4 with four replications. In the winter season, glyphosate and shikimic acid were increased five days after the application of treatments. In contrast, the same compounds increased only at doses of 36 g a.e. ha-1 and above in the wet season. The dose of 7.2 g a.e. ha-1 increased phenylalanine ammonia-lyase and benzoic acid in the winter season. The doses of 54 and 108 g a.e. ha-1 increased benzoic acid, caffeic acid, and salicylic acid. Our study indicated that glyphosate low doses increase the concentration of shikimic, benzoic, salicylic and caffeic acid, PAL and tyrosine. There was no reduction in aromatic amino acids and in secondary compounds from the shikimic acid pathway.


Subject(s)
Herbicides , Phaseolus , Benzoates , Herbicides/pharmacology , Phaseolus/metabolism , Secondary Metabolism , Shikimic Acid/metabolism , Glyphosate
2.
J Environ Sci Health B ; 57(6): 458-469, 2022.
Article in English | MEDLINE | ID: mdl-35422183

ABSTRACT

Glyphosate applied at low doses can stimulate photosynthesis and yield. The objective of this study was to evaluate the application of low doses of glyphosate and sowing seasons in physiological characteristics and grain yield of common bean of early cycle. Two experiments were conducted in the field, the first in winter season and the second in wet season. The experimental design was a randomized complete block design, consisting of five and seven low doses of glyphosate and one period of application, with four replications. Glyphosate low dose of 108.0 g a.e. ha-1 impaired net CO2 assimilation rate, stomatal conductance, transpiration rate, instantaneous carboxylation efficiency, number of pods per plant, number of grains per plant and number of grains per pod. Glyphosate dose of 7.2 g a.e. ha-1 provided a 23% increase in grain yield in winter season, and the dose of 36.0 g a.e. ha-1 provided a 109% increase in grain yield in wet season. To our knowledge, this is the first report on effect of glyphosate at low doses and sowing season to obtain yield increases in common bean of early cycle.


Subject(s)
Glycine/administration & dosage , Herbicides/administration & dosage , Phaseolus/drug effects , Edible Grain/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicides/pharmacology , Phaseolus/physiology , Photosynthesis/drug effects , Seasons , Glyphosate
3.
J Environ Sci Health B ; 56(2): 150-162, 2021.
Article in English | MEDLINE | ID: mdl-33571041

ABSTRACT

Plant growth can be stimulated by low doses of glyphosate. The objective of this work was to evaluate the effect of low doses of glyphosate and sowing season on the growth of the early cycle common bean. Two experiments were conducted in the field, the first in the winter and the second in the wet season, with the early cycle common bean cultivar IAC Imperador. The experimental design was a randomized complete block design, consisting of low doses of glyphosate applied on phenological stage V4, with four replications. Environmental conditions, such as air temperature, interfered in the early cycle common bean response to low doses of glyphosate. In the winter season, a dose of 36 g a.e. ha-1 promoted growth in the common bean, and a dose of 7.2 g a.e. ha-1 improved the harvest index. In the wet season, there was no growth stimulus, and the harvest index increased with a dose of 36 g a.e. ha-1. The harvest index was the only characteristic improved in both seasons, but with different doses. Our study indicates that growth characteristics of early cycle common bean are stimulated by low doses of glyphosate, but this response is dependent on the growing environment.


Subject(s)
Glycine/analogs & derivatives , Herbicides/administration & dosage , Hormesis , Phaseolus/growth & development , Dose-Response Relationship, Drug , Glycine/administration & dosage , Phaseolus/drug effects , Seasons , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...