Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 51(3): 1827-36, 2012 Feb 06.
Article in English | MEDLINE | ID: mdl-22277014

ABSTRACT

Calcium silicate hydrate (C-S-H) is the main constituent of hydrated cement paste and determines its cohesive properties. Because of the environmental impact of cement industry, it is more and more common to replace a part of the clinker in cement by secondary cementitious materials (SCMs). These SCMs are generally alumina-rich and as a consequence some aluminum is incorporated into the C-S-H. This may have consequences on the cohesion and durability of the material, and it is thus of importance to know the amount and the location of Al in C-S-H and what the parameters are that control these features. The present paper reports the (29)Si and (27)Al MAS NMR analyses of well-characterized C-A-S-H samples (C-S-H containing Al). These samples were synthesized using an original procedure that successfully leads to pure C-A-S-H of controlled compositions in equilibrium with well-characterized solutions. The (27)Al MAS NMR spectra were quantitatively interpreted assuming a tobermorite-like structure for C-A-S-H to determine the aluminum location in this structure. For this purpose, an in-house written software was used which allows decomposing several spectra simultaneously using the same constrained spectral parameters for each resonance but with variable intensities. The hypothesis on the aluminum location in the C-A-S-H structure determines the proportion of each silicon site. Therefore, from the (27)Al NMR quantitative results and the chemical composition of each sample, the intensity of each resonance line in the (29)Si spectra was set. The agreement between the experimental and calculated (29)Si MAS NMR spectra corroborates the assumed C-A-S-H structure and the proposed Al incorporation mechanism. The consistency between the results obtained for all compositions provides another means to assess the assumptions on the C-A-S-H structure. It is found that Al substitutes Si mainly in bridging positions and moderately in pairing positions in some conditions. Al in pairing site is observed only for Ca/(Si+Al) ratios greater than 0.95 (equivalent to 4 mmol.L(-1) of calcium hydroxide). Finally, the results suggest that penta and hexa-coordinated aluminum are adsorbed on the sides of the C-A-S-H particles.

2.
J Am Chem Soc ; 132(6): 1734-5, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20092274

ABSTRACT

For the structural determination of a ligand bound to an amorphous macromolecular system, solid-state NMR can be used to provide interatomic distances. It is shown here that selective labeling in discrete locations with tritium enables accurate measurement of long-range distances owing to the high gyromagnetic ratio of this nucleus, without structural modification of the molecule. This approach gives access to the largest NMR distance ever measured between two nuclei (14.4 A). (3)H MAS NMR appears to be a promising tool for structural applications in the biological and material sciences.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Tritium
3.
Chemphyschem ; 6(12): 2585-96, 2005 Dec 09.
Article in English | MEDLINE | ID: mdl-16284996

ABSTRACT

The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled-pore glasses (CPG) has been carefully studied using 10 MeV electron irradiation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO* does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier-transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses.

SELECTION OF CITATIONS
SEARCH DETAIL
...