Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 91(6): 688-98, 2005 Sep 20.
Article in English | MEDLINE | ID: mdl-15971228

ABSTRACT

Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.


Subject(s)
Cell Culture Techniques/methods , Culture Media, Serum-Free/chemistry , Embryo, Mammalian/cytology , Stem Cells/cytology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Culture Media, Serum-Free/pharmacology , Dose-Response Relationship, Drug , Fibroblast Growth Factors/pharmacology , Growth Substances/administration & dosage , Growth Substances/pharmacology , Humans , Laminin , Recombinant Proteins/pharmacology , Stem Cells/drug effects
2.
Fertil Steril ; 83(5): 1517-29, 2005 May.
Article in English | MEDLINE | ID: mdl-15866593

ABSTRACT

OBJECTIVE: To derive new human embryonic stem cell (hESC) lines on pathogen-free human placental fibroblast feeders under serum-free conditions. Because the embryo develops in close contact with extraembryonic membranes, we hypothesized that placental mesenchyme might replicate the stem cell niche in situ. DESIGN: We isolated and characterized human placental fibroblast lines from individual donors and tested their ability to support growth of federally registered hESC lines. Moreover, we performed extensive pathogen testing to ensure their suitability as feeders for the derivation of therapy-grade hESCs. RESULT(S): Human placental fibroblasts were comparable or superior to mouse embryo fibroblasts as hESC feeders. We used these qualified placental fibroblasts to derive two new hESC lines in knockout Dulbecco's modified Eagle's medium with serum-free 20% knockout serum replacement. The cells, which had a normal karyotype, were grown for more than 25 passages, expressed markers of stemness including Oct-3/4, Tra 1-60, Tra 1-80, and SSEA-4, exhibited high telomerase activity, and differentiated in vitro and in vivo into cells derived from all three germ layers, confirming their pluripotency. Additionally, newly derived hESCs were adapted to growth on a human placental laminin substrate in a defined medium. CONCLUSION(S): To our knowledge, this is the first report of hESC derivation in the absence of serum on qualified pathogen-free human feeders.


Subject(s)
Cell Differentiation , Culture Media, Serum-Free/pharmacology , Fibroblasts/cytology , Placenta/cytology , Tissue Culture Techniques/methods , Cell Differentiation/drug effects , Cell Differentiation/physiology , Female , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Placenta/drug effects , Placenta/physiology , Pregnancy , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...