Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 890: 164103, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37211104

ABSTRACT

We investigated the dendroclimatic response of a Pinus heldreichii metapopulation distributed over a wide elevation interval (from 882 to 2143 m a.s.l.), spanning from low mountain to upper subalpine vegetation belts in the southern Italian Apennines. The tested hypothesis is that wood growth along an elevational gradient is non-linearly related to air temperature. During three years of fieldwork (2012-2015) at 24 sites, we collected wood cores from a total of 214 pine trees with diameter at breast height from 19 to 180 cm (average 82.7 ± 32.9 cm). We used a combination of tree-ring and genetic methods to reveal factors involved in growth acclimation using a space-for-time approach. Scores from canonical correspondence analysis were used to combine individual tree-ring series into four composite chronologies related to air temperature along the elevation gradient. Overall, the June dendroclimatic response followed a bell-shaped thermal niche curve, increasing until a peak around 13-14 °C. A similarly bell-shaped response was found with previous autumn air temperature, and both dendroclimatic signals interacted with stem size and growth rates, generating a divergent growth response between the top and the bottom of the elevation gradient. Increased tree growth in the upper subalpine belt was consistent with the consequences of increasing air temperature under no drought stress. A positive link was uncovered between pine growth at all elevations and April mean temperature, with trees growing at the lowest elevations showing the strongest growth response. No elevational genetic differences were found, hence long-lived tree species with small geographical ranges may reverse their climatic response between the lower and upper bioclimatic zones of their environmental niche. Our study revealed a high resistance and acclimation capability of Mediterranean forest stands, and such low vulnerability to changing climatic conditions highlights the potential to store carbon in these ecosystems for the coming decades.


Subject(s)
Pinus , Trees , Temperature , Ecosystem , Forests
2.
Int J Biometeorol ; 66(12): 2433-2448, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36241912

ABSTRACT

Calibrating land surface phenology (LSP) with tree rings is important to model spatio-temporal variations in forest productivity. We used MODIS (resolution: 250 m) NDVI, WDRVI and EVI series 2000-2014 to derive LSP metrics quantifying phenophase timing and canopy photosynthetic rates of 26 European beech forests covering a large thermal gradient (5-16 °C) in Italy. Average phenophase timing changed greatly with site temperature (e.g. growing season 70 days longer at low- than high-elevation); average VI values were affected by precipitation. An annual temperature about 12 °C (c. 1100 m asl) represented a bioclimatic threshold dividing warm from cold beech forests, distinguished by different phenology-BAI (basal area increment) relationships and LSP trends. Cold forests showed decreasing VI values (browning) and delayed phenophases and had negative BAI slopes. Warmer forests tended to increase VI (greening), and positive BAI slopes. NDVI peak, commonly used in global trend assessments, changed with elevation in agreement with changes in wood production. A cross-validation modelling approach demonstrated the ability of LSP to predict average BAI and its interannual variability. Merging sites into bioclimatic groups improved models by amplifying the signal in growth or LSP. NDVI had highest performances when informing on BAI trends; WDRVI and EVI were mostly selected for modelling mean and interannual BAI. WDRVI association with tree rings, tested in this study for the first time, showed that this VI is highly promising for studying forest dynamics. MODIS LSP can quantify forest functioning changes across landscapes and model interannual spatial variations and trends in productivity dynamics under climate change.


Subject(s)
Fagus , Benchmarking , Forests , Climate Change , Seasons , Italy
3.
Nat Ecol Evol ; 5(9): 1291-1300, 2021 09.
Article in English | MEDLINE | ID: mdl-34267365

ABSTRACT

Long-term studies are essential to understand the impacts of global changes on the multiple facets of biological diversity. Here, we use distribution data for over 600 species of arthropods collected over 150 years from locations across Italy and test how multiple environmental stressors (climate, land use and human population density) influenced assemblage composition and functionality. By carefully reconstructing the temporal changes in these stressors, we explicitly tested how environmental changes can determine the observed changes in taxonomic and functional diversity. We found that rapid changes in precipitation destabilize the assemblages and maximize colonization and extinction rates, especially when coupled with changes in human population density (for taxonomy) or temperature (for functionality). Higher microclimatic heterogeneity increases the stability of biodiversity by reducing taxonomic and functional loss. Finally, changes in natural habitats increased colonization, influencing taxonomic nestedness and functional replacement. The integration of long-term datasets combining distributions, climate and traits may deepen our understanding of the processes underlying biodiversity responses to global-scale drivers.


Subject(s)
Arthropods , Animals , Biodiversity , Climate , Ecosystem , Humans , Population Density
4.
Glob Chang Biol ; 26(2): 851-863, 2020 02.
Article in English | MEDLINE | ID: mdl-31486191

ABSTRACT

A major component of climate change is an increase in temperature and precipitation variability. Over the last few decades, an increase in the frequency of extremely warm temperatures and drought severity has been observed across Europe. These warmer and drier conditions may reduce productivity and trigger compositional shifts in forest communities. However, we still lack a robust, biogeographical characterization of the negative impacts of climate extremes, such as droughts on forests. In this context, we investigated the impact of the 2017 summer drought on European forests. The normalized difference vegetation index (NDVI) was used as a proxy of forest productivity and was related to the standardized precipitation evapotranspiration index, which accounts for the temperature effects of the climate water balance. The spatial pattern of NDVI reduction in 2017 was largely driven by the extremely warm summer for parts of the central and eastern Mediterranean Basin (Italian and Balkan Peninsulas). The vulnerability to the 2017 summer drought was heterogeneously distributed over Europe, and topographic factors buffered some of the negative impacts. Mediterranean forests dominated by oak species were the most negatively impacted, whereas Pinus pinaster was the most resilient species. The impact of drought on the NDVI decreased at high elevations and mainly on east and north-east facing slopes. We illustrate how an adequate characterization of the coupling between climate conditions and forest productivity (NDVI) allows the determination of the most vulnerable areas to drought. This approach could be widely used for other extreme climate events and when considering other spatially resolved proxies of forest growth and health.


Subject(s)
Droughts , Hot Temperature , Climate Change , Europe , Forests , Trees
5.
Sci Data ; 6(1): 195, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31594943

ABSTRACT

Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at https://doi.org/10.6084/m9.figshare.7906739.v4 and http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491 , represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation.


Subject(s)
Biodiversity , Biota , Animals , Climate , Italy , Spatio-Temporal Analysis
6.
Sci Total Environ ; 682: 171-179, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31112818

ABSTRACT

High latitude and altitude environments are universally recognized as particularly sensitive to environmental changes and the current climate warming is inducing remarkable transformations on vegetation assemblage in these temperature-limited regions. However, next to the wealth of studies describing the effect of rising growing season temperature on trees, much less is known about the concurrent effects of precipitation and snowpack dynamics on the other key component of alpine vegetation represented by prostrate life forms. Selecting the most widespread shrub species in the North Hemisphere, we assembled a monospecific (Juniperus communis L.) network of 7 sites overarching the European Alps, measured the annual growth on >330 individuals and assessed the climate-growth associations for the last century (1910-2010) adopting a new model estimating the solid fraction of precipitation from unique highly-resolved daily climate records. Despite the high space-time variability of the yearly precipitation amount and distribution across the region, our analysis found a prominent, consistent and negative role of winter precipitation for shrub growth. Moreover, this crucial role of snow is maintained even in recent years, despite the persistent and significant warming trend. The presence of this underrated key factor for Alpine long-lived vegetation will require a thorough consideration. For the prostrate life form, not only temperature but also the solid fraction of winter precipitation should be considered to improve the projections of future growth trajectories.


Subject(s)
Juniperus/growth & development , Snow , Temperature , Trees/growth & development , Altitude , Climate , Climate Change , Italy , Seasons
7.
Glob Chang Biol ; 24(7): 2898-2912, 2018 07.
Article in English | MEDLINE | ID: mdl-29569794

ABSTRACT

In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (GV ) and height (GH ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO2 concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed-effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long-term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO2 effects on GV and GH were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (Ndep ) effects were repeatedly observed in GV and GH ; the positive effects of Ndep on canopy height growth rates, which tended to level off at Ndep values greater than approximately 1.0 g m-2  y-1 , were interpreted as positive impacts on forest stand above-ground net productivity at the selected study sites.


Subject(s)
Fagus/growth & development , Nitrogen/metabolism , Bayes Theorem , Demography , Forests , Italy , Models, Biological , Nitrogen/analysis , Temperature , Time Factors
8.
Front Plant Sci ; 7: 683, 2016.
Article in English | MEDLINE | ID: mdl-27242880

ABSTRACT

Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800-2011 at monthly resolution and for 1926-2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0-34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees, but further investigations are needed to improve our comprehension of the critical role of such elusive events in forest ecosystems.

9.
Bioresour Technol ; 100(6): 1999-2004, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19054667

ABSTRACT

One of the problems in marketing the wood of Prosopis and Acacia is the lack of standardization of its qualities. The aim of this paper was to obtain a preliminary detection of some properties of the wood of four species of the genus Prosopis and one species from Acacia grown in Argentina. To accomplish this objective, the content of extractives and some physical and mechanical characteristics were analyzed. The density rho(12) of all the species indicates that these woods range from heavy to very heavy (>or=0.69g/cm(3)). The total volumetric shrinkage values are low, less than 10%, for all species. The parallel compression strength and the shear strength for all the species indicate a very resistant wood (>or=46.93MPa and >or=18.35MPa, respectively). Brinell hardness was higher than 5kg/mm(2) in all cases. The species with less content of extractives is P. ruscifolia (approximately 9% of anhydrous mass) whereas A. aroma was the one with the greatest content (approximately 25% of anhydrous mass in the heartwood).


Subject(s)
Acacia , Prosopis , Wood , Argentina , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...