Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Cell Biochem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779980

ABSTRACT

The Hippo pathway, a signaling cascade involved in the regulation of organ size and several other processes, acts as a conduit between extracellular matrix (ECM) cues and cellular responses. We asked whether the basement membrane (BM), a specialized ECM component known to induce quiescence and differentiation in mammary epithelial cells, would regulate the localization, activity, and interactome of YAP, a Hippo pathway effector. To address this question, we used a broad range of experimental approaches, including 2D and 3D cultures of both mouse and human mammary epithelial cells, as well as the developing mouse mammary gland. In contrast to malignant cells, nontumoral cells cultured with a reconstituted BM (rBM) displayed higher concentrations of YAP in the cytoplasm. Incidentally, when in the nucleus of rBM-treated cells, YAP resided preferentially at the nuclear periphery. In agreement with our cell culture experiments, YAP exhibited cytoplasmic predominance in ductal cells of developing mammary epithelia, where a denser BM is found. Conversely, terminal end bud (TEB) cells with a thinner BM displayed higher nucleus-to-cytoplasm ratios of YAP. Bioinformatic analysis revealed that genes regulated by YAP were overrepresented in the transcriptomes of microdissected TEBs. Consistently, mouse epithelial cells exposed to the rBM expressed lower levels of YAP-regulated genes, although the protein level of YAP and Hippo components were slightly altered by the treatment. Mass spectrometry analysis identified a differential set of proteins interacting with YAP in cytoplasmic fractions of mouse epithelial cells in the absence or presence of rBM. In untreated cells, YAP interactants were enriched in processes related to ubiquitin-mediated proteolysis, whereas in cells exposed to rBM YAP interactants were mainly key proteins related to amino acid, amino sugar, and carbohydrate metabolism. Collectively, we unraveled that the BM induces YAP translocation or retention in the cytoplasm of nontumoral epithelial cells and that in the cytoplasm YAP seems to undertake novel functions in metabolic pathways.

2.
Mol Metab ; 83: 101922, 2024 May.
Article in English | MEDLINE | ID: mdl-38521184

ABSTRACT

OBJECTIVE: Evaluation of mitochondrial oxygen consumption and ATP production is important to investigate pancreatic islet pathophysiology. Most studies use cell lines due to difficulties in measuring primary islet respiration, which requires specific equipment and consumables, is expensive and poorly reproducible. Our aim was to establish a practical method to assess primary islet metabolic fluxes using standard commercial consumables. METHODS: Pancreatic islets were isolated from mice/rats, dispersed with trypsin, and adhered to pre-coated standard Seahorse or Resipher microplates. Oxygen consumption was evaluated using a Seahorse Extracellular Flux Analyzer or a Resipher Real-time Cell Analyzer. RESULTS: We provide a detailed protocol with all steps to optimize islet isolation with high yield and functionality. Our method requires a few islets per replicate; both rat and mouse islets present robust basal respiration and proper response to mitochondrial modulators and glucose. The technique was validated by other functional assays, which show these cells present conserved calcium influx and insulin secretion in response to glucose. We also show that our dispersed islets maintain robust basal respiration levels, in addition to maintaining up to 89% viability after five days in dispersed cultures. Furthermore, OCRs can be measured in Seahorse analyzers and in other plate respirometry systems, using standard materials. CONCLUSIONS: Overall, we established a practical and robust method to assess islet metabolic fluxes and oxidative phosphorylation, a valuable tool to uncover basic ß-cell metabolic mechanisms as well as for translational investigations, such as pharmacological candidate discovery and islet transplantation protocols.


Subject(s)
Islets of Langerhans , Mitochondria , Oxygen Consumption , Animals , Islets of Langerhans/metabolism , Mice , Rats , Mitochondria/metabolism , Male , Glucose/metabolism , Mice, Inbred C57BL , Insulin Secretion , Cells, Cultured , Oxidative Phosphorylation , Insulin/metabolism , Adenosine Triphosphate/metabolism
3.
J Cell Sci ; 136(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37712332

ABSTRACT

Cell context is key for cell state. Using physiologically relevant models of laminin-rich extracellular matrix (lrECM) induction of mammary epithelial cell quiescence and differentiation, we provide a landscape of the key molecules for the proliferation-quiescence decision, identifying multiple layers of regulation at the mRNA and protein levels. Quiescence occurred despite activity of Fak (also known as PTK2), Src and phosphoinositide 3-kinases (PI3Ks), suggesting the existence of a disconnecting node between upstream and downstream proliferative signalling. Pten, a lipid and protein phosphatase, fulfils this role, because its inhibition increased proliferation and restored signalling via the Akt, mTORC1, mTORC2 and mitogen-activated protein kinase (MAPK) pathways. Pten and laminin levels were positively correlated in developing murine mammary epithelia, and Pten localized apicolaterally in luminal cells in ducts and near the nascent lumen in terminal end buds. Consistently, in three-dimensional acinogenesis models, Pten was required for triggering and sustaining quiescence, polarity and architecture. The multilayered regulatory circuitry that we uncovered provides an explanation for the robustness of quiescence within a growth-suppressive microenvironment, which could nonetheless be disrupted by perturbations in master regulators such as Pten.

4.
Redox Biol ; 64: 102784, 2023 08.
Article in English | MEDLINE | ID: mdl-37356135

ABSTRACT

Neutrophil extracellular traps (NETs) are web-like structures of DNA coated with cytotoxic proteins and histones released by activated neutrophils through a process called NETosis. NETs release occurs through a sequence of highly organized events leading to chromatin expansion and rupture of nuclear and cellular membranes. In calcium ionophore-induced NETosis, the enzyme peptidylargine deiminase 4 (PAD4) mediates chromatin decondensation through histone citrullination, but the biochemical pathways involved in this process are not fully understood. Here we use live-imaging microscopy and proteomic studies of the neutrophil cellular fractions to investigate the early events in ionomycin-triggered NETosis. We found that before ionomycin-stimulated neutrophils release NETs, profound biochemical changes occur in and around their nucleus, such as, cytoskeleton reorganization, nuclear redistribution of actin-remodeling related proteins, and citrullination of actin-ligand and nuclear structural proteins. Ionomycin-stimulated neutrophils rapidly lose their characteristic polymorphic nucleus, and these changes are promptly communicated to the extracellular environment through the secretion of proteins related to immune response. Therefore, our findings revealed key biochemical mediators in the early process that subsequently culminates with nuclear and cell membranes rupture, and extracellular DNA release.


Subject(s)
Citrullination , Extracellular Traps , Actins/metabolism , Ionomycin/pharmacology , Ionomycin/metabolism , Nuclear Proteins/metabolism , Ligands , Proteomics , Neutrophils/metabolism , Extracellular Traps/metabolism , Chromatin/metabolism , DNA/metabolism , Cytoskeleton/metabolism
5.
Biochim Biophys Acta Gen Subj ; 1866(12): 130238, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36044955

ABSTRACT

The Hippo pathway plays central roles in relaying mechanical signals during development and tumorigenesis, but how the proteostasis of the Hippo kinase MST2 is regulated remains unknown. Here, we found that chemical inhibition of proteasomal proteolysis resulted in increased levels of MST2 in human breast epithelial cells. MST2 binds SCFßTrCP E3 ubiquitin ligase and silencing ßTrCP resulted in MST2 accumulation. Site-directed mutagenesis combined with computational molecular dynamics studies revealed that ßTrCP binds MST2 via a non-canonical degradation motif. Additionally, stiffer extracellular matrix, as well as hyperactivation of integrins resulted in enhanced MST2 degradation mediated by integrin-linked kinase (ILK) and actomyosin stress fibers. Our study uncovers the underlying biochemical mechanisms controlling MST2 degradation and underscores how alterations in the microenvironment rigidity regulate the proteostasis of a central Hippo pathway component.


Subject(s)
Serine-Threonine Kinase 3 , Ubiquitin-Protein Ligases , beta-Transducin Repeat-Containing Proteins , Humans , beta-Transducin Repeat-Containing Proteins/metabolism , Extracellular Matrix/metabolism , Phosphorylation , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Serine-Threonine Kinase 3/metabolism
6.
J Cell Sci ; 135(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35929545

ABSTRACT

Quiescence, the ability to temporarily halt proliferation, is a conserved process that initially allowed survival of unicellular organisms during inhospitable times and later contributed to the rise of multicellular organisms, becoming key for cell differentiation, size control and tissue homeostasis. In this Review, we explore the concept of cancer as a disease that involves abnormal regulation of cellular quiescence at every step, from malignant transformation to metastatic outgrowth. Indeed, disrupted quiescence regulation can be linked to each of the so-called 'hallmarks of cancer'. As we argue here, quiescence induction contributes to immune evasion and resistance against cell death. In contrast, loss of quiescence underlies sustained proliferative signalling, evasion of growth suppressors, pro-tumorigenic inflammation, angiogenesis and genomic instability. Finally, both acquisition and loss of quiescence are involved in replicative immortality, metastasis and deregulated cellular energetics. We believe that a viewpoint that considers quiescence abnormalities that occur during oncogenesis might change the way we ask fundamental questions and the experimental approaches we take, potentially contributing to novel discoveries that might help to alter the course of cancer therapy.


Subject(s)
Neoplasms , Carcinogenesis , Cell Transformation, Neoplastic , Humans , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Signal Transduction
7.
Neoplasia ; 30: 100803, 2022 08.
Article in English | MEDLINE | ID: mdl-35526305

ABSTRACT

Invasion of surrounding stroma is an early event in breast cancer metastatic progression, and involves loss of cell polarity, loss of myoepithelial layer, epithelial-mesenchymal transition (EMT) and remodeling of the extracellular matrix (ECM). Integrins are transmembrane receptors responsible for cell-ECM binding, which triggers signals that regulate many aspects of cell behavior and fate. Changes in the expression, localization and pairing of integrins contribute for abnormal responses found in transformed epithelia. We analyzed 345 human breast cancer samples in tissue microarrays (TMA) from cases diagnosed with invasive breast carcinoma to assess the expression and localization pattern of integrin αV and correlation with clinical parameters. Patients with lower levels of integrin αV staining showed reduced cancer specific survival. A subset of cases presented a peripheral staining of integrin αV surrounding tumor cell clusters, possibly matching the remaining myoepithelial layer. Indeed, the majority of ductal carcinoma in situ (DCIS) components found in the TMA presented integrin αV at their periphery, whereas this pattern was mostly lost in invasive components, even in the same sample. The lack of peripheral integrin αV correlated with decreased cancer specific survival. In addition, we observed that the presence of integrin αV in the stroma was an indicative of poor survival and metastatic disease. Consistently, by interrogating publicly available datasets we found that, although patients with higher mRNA levels of integrin αV had increased risk of developing metastasis, high co-expression of integrin αV and a myoepithelial cell marker (MYH11) mRNA levels correlated with better clinical outcomes. Finally, a 3D cell culture model of non-malignant and malignant cells reproduced the integrin αV pattern seen in patient samples. Taken together, our data indicate that both the expression levels of integrin αV and its tissue localization in primary tumors have prognostic value, and thus, could be used to help predict patients at higher risk of developing metastasis.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Breast Neoplasms/metabolism , Female , Humans , Integrin alphaV/genetics , Integrin alphaV/metabolism , Prognosis , RNA, Messenger/genetics
8.
J Biol Chem ; 297(3): 101041, 2021 09.
Article in English | MEDLINE | ID: mdl-34358560

ABSTRACT

SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFN-responsive genes. Our results suggest that PARP9/DTX3L-dependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARS-CoV-2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself.


Subject(s)
ADP-Ribosylation , COVID-19/virology , Interferons/metabolism , Neoplasm Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , SARS-CoV-2/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Humans
9.
Front Physiol ; 12: 622987, 2021.
Article in English | MEDLINE | ID: mdl-33767631

ABSTRACT

Upper respiratory viral infections can decrease the sense of smell either by inflammatory restriction of nasal airflow that carries the odorant molecules or through interference in olfactory sensory neuron function. During the coronavirus disease 2019 (COVID-19) pandemic, triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), worldwide reports of severe smell loss (anosmia/hyposmia) revealed a different type of olfactory dysfunction associated with respiratory virus infection. Since self-reported perception of smell is subjective and SARS-CoV-2 exposure is variable in the general population, we aimed to study a population that would be more homogeneously exposed to the virus. Here, we investigated the prevalence of olfactory loss in frontline health professionals diagnosed with COVID-19 in Brazil, one of the major epicenters of the disease. We also analyzed the rate of olfactory function recovery and the particular characteristics of olfactory deficit in this population. A widely disclosed cross-sectional online survey directed to health care workers was developed by a group of researchers to collect data concerning demographic information, general symptoms, otolaryngological symptoms, comorbidities, and COVID-19 test results. Of the 1,376 health professionals who completed the questionnaire, 795 (57.8%) were working directly with COVID-19 patients, either in intensive care units, emergency rooms, wards, outpatient clinics, or other areas. Five-hundred forty-one (39.3%) participants tested positive for SARS-CoV-2, and 509 (37%) were not tested. Prevalence of olfactory dysfunction in COVID-19-positive subjects was 83.9% (454 of 541) compared to 12.9% (42 of 326) of those who tested negative and to 14.9% (76 of 509) of those not tested. Olfactory dysfunction incidence was higher in those working in wards, emergency rooms, and intensive care units compared to professionals in outpatient clinics. In general, remission from olfactory symptoms was frequent by the time of responses. Taste disturbances were present in 74.1% of infected participants and were significantly associated with hyposmia. In conclusion, olfactory dysfunction is highly correlated with exposure to SARS-CoV-2 in health care professionals, and remission rates up to 2 weeks are high.

10.
J Neurochem ; 157(4): 930-943, 2021 05.
Article in English | MEDLINE | ID: mdl-32970861

ABSTRACT

Olfactory disorders have been increasingly reported in individuals infected with SARS-CoV-2, the virus causing the coronavirus disease 2019 (COVID-19). Losing the sense of smell has a strong impact on the quality of life, since it may lead to malnutrition, weight loss, food poisoning, depression, and exposure to dangerous chemicals. Individuals who suffer from anosmia (inability to smell) also cannot sense the flavor of food, which is a combination of taste and smell. Interestingly, infected individuals have reported sudden loss of smell with no congested nose, as is frequently observed in common colds or other upper respiratory tract infections. These observations suggest that SARS-CoV-2 infection leads to olfactory loss through a distinct mechanism, which is still unclear. This article provides an overview of olfactory loss and the recent findings relating to COVID-19. Possible mechanisms of SARS-CoV-2-induced olfactory loss are also discussed.


Subject(s)
COVID-19/complications , Olfaction Disorders/etiology , Virus Diseases/complications , Humans , Olfaction Disorders/pathology , Olfactory Receptor Neurons/pathology
11.
Cell Death Dis ; 11(12): 1070, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318476

ABSTRACT

Lack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.


Subject(s)
Breast Neoplasms/pathology , Light , Antioxidants/pharmacology , Breast Neoplasms/drug therapy , Carcinogenesis/drug effects , Carcinogenesis/pathology , Carcinogenesis/radiation effects , Cell Death/drug effects , Cell Death/radiation effects , Cell Line, Tumor , Female , Ferroptosis/drug effects , Ferroptosis/radiation effects , Humans , Lipids/chemistry , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/radiation effects , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Models, Biological , Necroptosis/drug effects , Necroptosis/radiation effects , Oxidation-Reduction , Photochemotherapy , Triple Negative Breast Neoplasms/pathology
12.
FASEB J ; 33(12): 13176-13188, 2019 12.
Article in English | MEDLINE | ID: mdl-31480917

ABSTRACT

Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Animals , Biological Transport/drug effects , Cell Line , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Homeostasis , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Mice , Mitochondria/drug effects , Real-Time Polymerase Chain Reaction , Thapsigargin/pharmacology
13.
Cell Death Dis ; 10(6): 459, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189884

ABSTRACT

Tissue architecture and cell-extracellular matrix (cell-ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of γ-H2AX and cisplatin-DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.


Subject(s)
Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Breast Neoplasms/drug therapy , Cellular Microenvironment/drug effects , Cisplatin/pharmacology , A549 Cells , Antineoplastic Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins/genetics , Autophagy/drug effects , Autophagy/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Culture Techniques/methods , Cellular Senescence/drug effects , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Cisplatin/therapeutic use , DNA Damage/drug effects , DNA Replication/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Drug Resistance, Neoplasm , Female , Histones/metabolism , Humans , MCF-7 Cells , Pyrazines/pharmacology , S Phase Cell Cycle Checkpoints/drug effects , Sulfones/pharmacology , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
J Cell Physiol ; 234(10): 19048-19058, 2019 08.
Article in English | MEDLINE | ID: mdl-30924162

ABSTRACT

Prostate development and function are regulated by androgens. Epithelial cell apoptosis in response to androgen deprivation is caspase-9-dependent and peaks at Day 3 after castration. However, isolated epithelial cells survive in the absence of androgens. Znf142 showed an on-off expression pattern in intraepithelial CD68-positive macrophages, with the on-phase at Day 3 after castration. Rats treated with gadolinium chloride to deplete macrophages showed a significant drop in apoptosis, suggesting a causal relationship between macrophages and epithelial cell apoptosis. Intraepithelial M1-polarization was also limited to Day 3, and the inducible nitric oxide synthase (iNOS) knockout mice showed significantly less apoptosis than wild-type controls. The epithelial cells showed focal DNA double-strand breaks (DSB), 8-oxoguanine, and protein tyrosine-nitrosylation, fingerprints of exposure to peroxinitrite. Cultured epithelial cells induced M1-polarization and showed focal DSB and underwent apoptosis. The same phenomena were reproduced in LNCaP cells cocultured with Raw 264.7 macrophages. In conclusion, the M1 142 -macrophage (named after Znf142) attack causes activation of the intrinsic apoptosis pathway in epithelial cells after castration.


Subject(s)
Apoptosis/physiology , Epithelial Cells/metabolism , Macrophages/physiology , Oxidative Stress/physiology , Prostate/pathology , Androgen Antagonists , Androgens/metabolism , Animals , Cell Line , Gadolinium/pharmacology , Male , Mice , Mice, Knockout , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Prostate/cytology , Prostate/growth & development , Prostatic Neoplasms/pathology , RAW 264.7 Cells , Rats , Rats, Wistar , Trans-Activators/metabolism , Transcription Factors
15.
Dev Dyn ; 248(3): 211-220, 2019 03.
Article in English | MEDLINE | ID: mdl-30653275

ABSTRACT

Ventral prostate (VP) morphogenesis starts during embryonic development and continues for the first three postnatal weeks. Heparan sulfate (HS) affects paracrine signaling. Heparanase-1 (HPSE) is the only enzyme capable of cleaving HS. HPSE releases the HS bioactive fragment and mobilizes growth factors. Little is known, however, about HS turnover and HPSE function during VP morphogenesis. In this study, we measured HSPG expression and analyzed the expression and distribution of HPSE in the rat VP. HPSE was predominantly expressed by the VP epithelium. The VP was treated with heparin in ex vivo cultures to interfere with HS and resulted in delayed epithelial growth. Hpse knockdown using siRNA delayed epithelial growth in the first postnatal week ex vivo, which was similar to treating with the lower concentration of heparin. Hpse silencing was related to changes in HS chain length (as determined by size-exclusion chromatography, up-regulation of Mmp9, and down-regulation of Mmp2 expression). It also down-modulated ERK1/2 phosphorylation, suggesting a reduction in signaling, likely due to decreased HS cleavage and growth factor bioavailability. Our results showed that HPSE played a role in early epithelial growth during the first week of VP postnatal development. Developmental Dynamics 248:211-220, 2019. © 2019 Wiley Periodicals, Inc.


Subject(s)
Epithelium/growth & development , Glucuronidase/metabolism , Prostate/growth & development , Animals , Animals, Newborn , Cells, Cultured , Epithelium/metabolism , Female , Gene Expression Regulation , Male , Pregnancy , Prostate/cytology , Rats , Signal Transduction
16.
J Cell Physiol ; 234(5): 6886-6897, 2019 05.
Article in English | MEDLINE | ID: mdl-30362535

ABSTRACT

Androgens induce rat prostate induction from the urogenital sinus epithelium at embryonic day 17.5. Subsequent morphogenesis, including epithelial cord growth, branching, and canalization, results from concerted paracrine interactions with the stroma. A significant number of paracrine factors bind heparan sulfate (HS). We hypothesized that interfering with overall sulfation could disrupt the signaling mediated by HS-binding factors and that the undersulfated environment would allow investigation of individual exogenous morphogens. First, we investigated whether acinar morphogenesis involved HS-proteoglycan expression and found that syndecans 1 and 3 were upregulated in RWPE1 cells in the transition from two- to three-dimensional (3D) Matrigel, capable of promoting spheroid formation. We then investigated whether sodium chlorate, a general sulfation inhibitor, interfered with spheroid formation by RWPE1 cells and acinar morphogenesis in ex vivo ventral prostate (VP) organ culture. As expected, treatment with sodium chlorate inhibited spheroid formation by RWPE1 cells in 3D culture. Chlorate also inhibited ex vivo VP epithelial branching and canalization, resulting in long branchless epithelial structures. We then investigated whether the HS-binding factors, FGF10, TGFß1, and SDF1, could reverse the effect of sodium chlorate. Although no effect was seen in the FGF10- and TGFß1-treated samples, SDF1 promoted epithelial canalization in the low sulfated environment, highlighting its specific role in lumen formation. Altogether, the results show that sodium chlorate perturbed prostate morphogenesis and allowed investigation of factors involved in branching and/or canalization, implicating SDF1 signaling in epithelial canalization.


Subject(s)
Chemokine CXCL12/metabolism , Epithelial Cells/metabolism , Morphogenesis/physiology , Prostate/metabolism , Prostate/physiology , Animals , Cell Line , Collagen/metabolism , Drug Combinations , Epithelial Cells/physiology , Epithelium/metabolism , Epithelium/physiology , Fibroblast Growth Factor 10/metabolism , Gene Expression Regulation, Developmental/physiology , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Laminin/metabolism , Male , Organ Culture Techniques/methods , Organogenesis/physiology , Proteoglycans/metabolism , Rats , Rats, Wistar , Signal Transduction/physiology , Transforming Growth Factor beta1/metabolism
17.
Cell Death Dis, v. 10, 459, jun. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2776

ABSTRACT

Tissue architecture and cell–extracellular matrix (cell–ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of ?-H2AX and cisplatin–DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.

18.
Cell death dis ; 10: 459, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16056

ABSTRACT

Tissue architecture and cell–extracellular matrix (cell–ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of ?-H2AX and cisplatin–DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.

19.
Front Cell Dev Biol ; 6: 59, 2018.
Article in English | MEDLINE | ID: mdl-29930939

ABSTRACT

Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.

20.
Redox Biol ; 16: 179-188, 2018 06.
Article in English | MEDLINE | ID: mdl-29510342

ABSTRACT

Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl-/H2O2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity.


Subject(s)
Neutrophils/metabolism , Peroxides/metabolism , Pseudomonas aeruginosa/drug effects , Uric Acid/analogs & derivatives , Uric Acid/metabolism , Catalysis , Cell Differentiation/genetics , Free Radicals/metabolism , Glutathione/metabolism , HL-60 Cells/metabolism , HL-60 Cells/microbiology , Humans , Hydrogen Peroxide/metabolism , Hypochlorous Acid/chemistry , Neutrophils/microbiology , Oxidants/metabolism , Oxidation-Reduction/drug effects , Peroxides/chemistry , Pseudomonas aeruginosa/pathogenicity , Uric Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...