Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ergonomics ; : 1-21, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38544443

ABSTRACT

Garment pattern-making is one of the most important parts of the apparel industry. However, traditional pattern-making is an experience-based work, very time-consuming and ignores the body shape difference. This paper proposes a parametric design method for garment pattern based on body dimensions acquired from a body scanner and body features (body feature points and three segmented body part shape classification) identified by designers according to their professional knowledge. By using this method, we construct a men's shirt pattern recommendation system oriented to personalised fit. The system consists of two databases and three models. The two databases include a relational database (Database I) and a personalised basic pattern (PBP) database (Database II). The Database I is based on manual and three-dimensional (3D) measurements of human bodies by using designer's knowledge. And Database I is a relational database, which is organised in terms of the relational model of the body part shape and its key body feature dimensions. After a deep analysis of measured data, the irrelevant measured dimensions to human body shape have been excluded by designers and extract representative human body feature dimensions. In addition, the relations between body shapes and previously identified body feature dimensions have been modelled. From the above relational model, we label key feature point positions on the corresponding 3D body model obtained from 3D body scanning and correct the whole 3D human upper body model into the semantically interpretable one. The 3D personalised basic pattern is drawn on the corrected model based on these key feature points. By using three-dimensional to two-dimensional (3D-to-2D) flattening technology, a 2D flatten graph of the 3D personalised basic pattern of the interpretable model is obtained and slightly adjusted to the form suitable for industrial production, i.e., PBP and the PBP database (Database II) is built. In addition, the three models include a basic pattern parametric model (Model I) (characterizing the relations between the basic pattern and its key influencing human dimensions (chest girth and back length)), a regression model (Model II) which enables to infer from basic pattern to PBP for three body parts based on the one-to-one correspondence of key points between the PBPs and the basic patterns and a personalised shirt pattern parametric model (Model III) (characterizing the structural relations between the personalised shirt pattern (PBPshirt) and PBP). The initial input items of the recommendation system are the body dimension constraint parameters, including chest girth, back length and the body feature dimensions used to determine each body part shape as well as three shirt style constraint parameters (slim, regular and loose). By using Model I, the corresponding basic pattern can be generated through the user's chest girth and back length. Body feature dimensions determine the three body parts' shapes. Then, Model II is used to generate the PBP for the corresponding body parts shape. Based on the shirt style chosen by the user, Mode III is used to generate the PBPshirt from the PBP. The output of the recommendation system is a fit-oriented PBPshirt. Moreover, if the PBPshirt is unsatisfactory after a virtual try-on, four adjustable parameters (front side-seam dart, back side-seam dart, waist dart and garment bodice length) are designed to adjust the PBPshirt generated by the proposed recommendation system.


The proposed recommendation system combines the designer's knowledge of manual measurement of the human body, traditional 2D pattern-making methods and 3D-to-2D flattening technology to generate personalised shirt patterns automatically and quickly, thus significantly improving pattern-making efficiency. The reliance on designers in the garment production process is reduced. Even users with no pattern-making knowledge can also develop professional shirt patterns by using our proposed system.

2.
Ergonomics ; 65(1): 60-77, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34338605

ABSTRACT

Optimal ergonomic design for consumer goods (such as garments and furniture) cannot be perfectly realised because of imprecise interactions between products and human models. In this paper, we propose a new body classification method that integrates human skeleton features, expert experience, manual measurement methods, and statistical analysis (principal component analysis and K-means clustering). Taking the upper body of young males as an example, the proposed method enables the classification of upper bodies into a number of levels at three key body segments (the arm root [seven levels], the shoulder [five levels], and the torso [below the shoulder, eight levels]). From several experiments, we found that the proposed method can lead to more accurate results than the classical classification methods based on three-dimensional (3 D) human model and can provide semantic knowledge of human body shapes. This includes interpretations of the classification results at these three body segments and key feature point positions, as determined by skeleton features and expert experience. Quantitative analysis also demonstrates that the reconstruction errors satisfy the requirements of garment design and production. Practitioner summary The acquisition and classification of anthropometric data constitute the basis of ergonomic design. This paper presents a new method for body classification that leads to more accurate results than classical classification methods (which are based on human body models). We also provide semantic knowledge about the shape of human body. The proposed method can also be extended to 3 D body modelling and to the design of other consumer products, such as furniture, seats, and cars. Abbreviations: PCA: principal component analysis; KMO: Kaiser-Meyer-Olkin; ANOVA: analysis of variance; 3D: three-dimensional; 2D: two-dimensional; ISO: International Standardisation Organisation; BFB: body-feature-based.


Subject(s)
Ergonomics , Human Body , Anthropometry , Humans , Imaging, Three-Dimensional , Interior Design and Furnishings , Male , Principal Component Analysis
3.
Materials (Basel) ; 14(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34772206

ABSTRACT

Comfort can be considered as subjective feeling, which could be affected by the external ambient, by the physical activity, and by clothing. Considering the human body heat transfer system, it mainly depends on various parameters including clothing materials, external and internal environment, etc. The purpose of the current paper is to study and establish a quantitative relationship between one of the clothing parameters, ease allowance (air gap values) and the heat transfer through the human body to clothing materials and then to the environment. The study considered clothing which is integrated with the 3D ease allowance from the anthropometric and morphological data. Such incorporating of the clothing's 3D ease control was essential to properly manage the air space between the body and the proposed clothing thermal regulation model. In the context of thermal comfort, a clothing system consisting of the human body, an ease allowance under clothing, a layer of textile materials, and a peripheral layer adjacent to the textile material was used. For the complete system, the heat transfer from the skin to the environment, which is influenced by thermoregulation of the human body, air gap, tissue, and environmental conditions were also considered. To model and predict the heat transfer between the human body and the temperature of skin and clothes, a 3D adaptive garment which could be adjusted with ease allowance was used. In the paper, a thermoregulatory model was developed and proposed to predict the temperature and heat within clothing material, skin, and air space. Based on the result, in general the main difference in the temperature of clothing and skin from segment to segment is due to the uneven distribution of air layers under the clothing.

4.
Sensors (Basel) ; 21(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205598

ABSTRACT

In the context of fashion/textile innovations towards Industry 4.0, a variety of digital technologies, such as 3D garment CAD, have been proposed to automate, optimize design and manufacturing processes in the organizations of involved enterprises and supply chains as well as services such as marketing and sales. However, the current digital solutions rarely deal with key elements used in the fashion industry, including professional knowledge, as well as fashion and functional requirements of the customer and their relations with product technical parameters. Especially, product design plays an essential role in the whole fashion supply chain and should be paid more attention to in the process of digitalization and intelligentization of fashion companies. In this context, we originally developed an interactive fashion and garment design system by systematically integrating a number of data-driven services of garment design recommendation, 3D virtual garment fitting visualization, design knowledge base, and design parameters adjustment. This system enables close interactions between the designer, consumer, and manufacturer around the virtual product corresponding to each design solution. In this way, the complexity of the product design process can drastically be reduced by directly integrating the consumer's perception and professional designer's knowledge into the garment computer-aided design (CAD) environment. Furthermore, for a specific consumer profile, the related computations (design solution recommendation and design parameters adjustment) are performed by using a number of intelligent algorithms (BIRCH, adaptive Random Forest algorithms, and association mining) and matching with a formalized design knowledge base. The proposed interactive design system has been implemented and then exposed through the REST API, for designing garments meeting the consumer's personalized fashion requirements by repeatedly running the cycle of design recommendation-virtual garment fitting-online evaluation of designer and consumer-design parameters adjustment-design knowledge base creation, and updating. The effectiveness of the proposed system has been validated through a business case of personalized men's shirt design.


Subject(s)
Algorithms , Computer-Aided Design , Humans , Male , Textiles
5.
Polymers (Basel) ; 13(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809243

ABSTRACT

The effects of the yarn composition system inside 3D woven high-performance textiles are not well investigated and understood against their final ballistic impact behaviour. The current study aims to examine the ballistic impact performances of armour panels made of different 3D woven fabric variants through postmortem observations. Four high-performance five-layer 3D woven fabric variants were engineered based on their different warp yarn compositions but similar area density. A 50 × 50 cm2 armour system of each variant, which comprises eight nonbonded but aligned panels, namely, 3D-40-8/0 (or 8/0), 3D-40-8/4 (or 8/4), 3D-40-8/8 (or 8/8) and 3D-40-4/8 (or 4/8), were prepared and moulded to resemble female frontal morphology. The armour systems were then tested with nonperforation ballistic impacts according to the National Institute of Justice (NIJ) 0101.06 standard Level-IIIA. Two high-speed cameras were used to capture the event throughout the test. Nondestructive investigation (NDI) using optical microscopic and stereoscopic 3D digital images were employed for the analysis. The armour panels made of the 8/0 and 4/8 fabric variants were perforated, whereas the armour made of the 8/8 and 8/4 fabric variants showed no perforation. Besides, the armour made of the 8/4 fabric variant revealed higher local and global surface displacements than the other armours. The current research findings are useful for further engineering of 3D woven fabric for seamless women's impact protective clothing.

6.
Materials (Basel) ; 13(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977529

ABSTRACT

Recently, three-dimensional (3D) warp interlock fabric has been involved in composite reinforcement and soft ballistic material due to its great moldability, improved impact energy-absorbing capacity, and good intra-ply resistance to delamination behaviors. However, understanding the effects of different parameters of the fabric on its mechanical behavior is necessary before the final application. The fabric architecture and its internal yarn composition are among the common influencing parameters. The current research aims to explore the effects of the warp yarn interchange ratio in the 3D warp interlock para-aramid architecture on its mechanical behavior. Thus, four 3D warp interlock variants with different warp (binding and stuffer) yarn ratios but similar architecture and structural characteristics were engineered and manufactured. Tensile and flexural rigidity mechanical tests were carried out at macro- and meso-scale according to standard EN ISO 13 934-1 and nonwoven bending length (WSP 90.5(05)), respectively. Based on the results, the warp yarn interchange ratio in the structure revealed strong influences on the tensile properties of the fabric at both the yarn and final fabric stages. Moreover, the bending stiffness of the different structures showed significant variation in both the warp and weft directions. Thus, the interchange rations of stuffer and binding warp yarn inside the 3D warp interlock fabric were found to be very key in optimizing the mechanical performance of the fabric for final applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...