Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 381(2): 214-23, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18638442

ABSTRACT

It is postulated that elevated tissue concentrations of cortisol may be associated with the development of metabolic syndrome, obesity, and type 2 diabetes. The 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) enzyme regenerates cortisol from inactive cortisone in tissues such as liver and adipose. To better understand the pivotal role of 11beta-HSD1 in disease development, an in vivo microdialysis assay coupled with liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis using stable isotope-labeled (SIL) cortisone as a substrate was developed. This assay overcomes the limitations of existing methodologies that suffer from radioactivity exposure and analytical assay sensitivity and specificity concerns. Analyte extraction efficiencies (E(d)) were evaluated by retrodialysis. The conversion of SIL-cortisone to SIL-cortisol in rhesus monkey adipose tissue was studied. Solutions containing 100, 500, and 1000 ng/mL SIL-cortisone were locally delivered through an implanted 30-mm microdialysis probe in adipose tissue. At the delivery rate of 1.0 and 0.5 microL/min, E(d) values for SIL-cortisone were between 58.7+/-5.6% (n=4) and 72.7+/-1.3% (n=4), whereas at 0.3 microL/min E(d) reached nearly 100%. The presence of 11beta-HSD1 activities in adipose tissue was demonstrated by production of SIL-cortisol during SIL-cortisone infusion. This methodology could be applied to cortisol metabolism studies in tissues of other mammalian species.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adipose Tissue/metabolism , Chromatography, Liquid , Cortisone/metabolism , Hydrocortisone/metabolism , Microdialysis , Tandem Mass Spectrometry , Adipose Tissue/drug effects , Animals , Carbon Isotopes , Macaca mulatta
2.
Eur J Pharm Sci ; 26(2): 151-61, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16085400

ABSTRACT

Enterohepatic recirculation (EHR) occurs via biliary excretion and intestinal reabsorption of a drug. Drug recycling through EHR can lead to a change in pharmacokinetic (PK) properties, such as reduced clearance (CL), extended half-life (T(1/2)) and increased plasma exposure (AUC). As a result, EHR may prolong the pharmacological effect of drugs. In the present study, the compound (Cpd A) was found to exhibit EHR in Rhesus monkeys associated with a reduction in CL (from 3.8 to 0.33 Lh(-1), IV; from 2.3 to 0.4 Lh(-1), PO), and an increase in T(1/2) (from 0.9 to 18 h, IV) and in AUC (from 1.5 to 17.4 microg h/mL, IV; from 2.8 to 16.3 microg h/mL, PO), by comparing the PK in the monkeys via the interruption of EHR (bile-duct cannulation) with that in the intact monkeys. A population four-compartment model was constructed based on recirculation loops incorporating all possible inputs (bile secretion, a lag-time model for gall bladder emptying, routes and amounts of a single dose administration) to fully evaluate the EHR of Cpd A. The plasma concentrations versus time profiles predicted from the model had a good fit to the values observed in the subjects and were further simulated with 90% confidence interval to demonstrate its utility. Thus, the model could be applied as a useful tool to evaluate the drugs or compounds that undergo EHR in different species.


Subject(s)
Bile/metabolism , Enterohepatic Circulation , Models, Biological , Pharmacokinetics , Animals , Area Under Curve , Bile/chemistry , Biotransformation , Common Bile Duct/surgery , Half-Life , Intestinal Absorption , Liver/metabolism , Macaca mulatta , Male , Metabolic Clearance Rate , Xenobiotics/pharmacokinetics , Xenobiotics/pharmacology
3.
Pharm Res ; 22(7): 1101-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16028010

ABSTRACT

PURPOSE: To characterize the pharmacokinetics of simvastatin (SV) and simvastatin acid (SVA), a lactone-acid pair known to undergo reversible metabolism, and to better understand mechanisms underlying pharmacokinetic interactions observed between SV and gemfibrozil. METHODS: Pharmacokinetic studies were conducted after intravenous administration of SV and SVA to dogs pretreated with a vehicle or gemfibrozil. In vitro metabolism of SVA in dog hepatocytes as well as in vitro hepatic and plasma conversion of SV/SVA were investigated in the absence and presence of gemfibrozil. RESULTS: In control animals, the irreversible elimination clearances of SV (CL10) and SVA (CL20) were 10.5 and 18.6 ml min(-1) kg(-1), respectively. The formation clearance of SVA from SV (CL12 = 4.8 ml min(-1) kg(-1)) was 8-fold greater than that of SV from SVA (CL21 = 0.6 ml min(-1) kg(-1)), and the recycled fraction was relatively minor (0.009). In gemfibrozil-treated animals, CL10 was essentially unchanged, whereas CL12, CL20, CL21, and recycled fraction were significantly decreased to 2.9, 9, 0.14 ml min(-1) kg(-1), and 0.003, respectively. In control dogs, values for real volume of distribution at steady state (Vss,real) of SV (2.3 L kg(-1)) were much larger than the corresponding values of SVA (0.3 L kg(-1)). Gemfibrozil treatment did not affect Vss,real of either SV or SVA. In dog hepatocytes, gemfibrozil modestly affected the formation of CYP3A-mediated oxidative metabolites (IC50 > 200 microM) and beta-oxidative products (IC5) approximately 100 microM), but markedly inhibited the glucuronidation-mediated lactonization of SVA and the glucuronidation of an SVA beta-oxidation product (IC50 = 18 microM). In in vitro dog and human liver S9 and plasma, hydrolysis of SV to SVA was much faster than that of SVA to SV. Gemfibrozil (250 microM) had a minimal inhibitory effect on the hydrolysis of either SV to SVA or SVA to SV in dog and human liver S9, but had a significant ( approximately 60%) inhibitory effect on the SV to SVA hydrolysis in both dog and human plasma. CONCLUSIONS: In dogs, the interconversion process favored the formation of SVA and was less efficient than the irreversible elimination processes of SV and SVA. Treatment with gemfibrozil did not affect the distribution of SV/SVA, but rather affected the elimination of SVA and the SV/SVA interconversion processes. Gemfibrozil decreased CL20 and CL21 likely via its inhibitory effect on the glucuronidation of SVA, and not on the CYP3A-mediated oxidative metabolism of SV or SVA, the beta-oxidation of SVA, nor the SVA to SV hydrolysis. The decrease in CL12 might be due in part to the inhibitory effect of gemfibrozil on SV to SVA hydrolysis in plasma. Similar rationales may also be applicable to studies in humans and/or other statin lactone-acid pairs.


Subject(s)
Anticholesteremic Agents/pharmacokinetics , Gemfibrozil/pharmacology , Hypolipidemic Agents/pharmacology , Simvastatin/analogs & derivatives , Simvastatin/pharmacokinetics , Animals , Cells, Cultured , Dogs , Hepatocytes/metabolism , Humans , Hydrolysis/drug effects , Infusions, Intravenous , Liver/chemistry , Liver/metabolism , Simvastatin/blood
4.
Drug Metab Dispos ; 33(9): 1373-81, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15980102

ABSTRACT

Metabolism and disposition of MGS0028 [(1R,2S,5S,6S)-2-amino-6-fluoro-4-oxobicyclo[3.1.0]hexane-2,6-dicarboxylic acid monohydrate], a potent group II metabotropic glutamate receptor agonist, were examined in three preclinical species (Sprague-Dawley rats, beagle dogs, and rhesus monkeys). In rats, MGS0028 was widely distributed and primarily excreted in urine as parent and as a single reductive metabolite, identified as the 4R-isomer MGS0034 [(1R,2S,4R,5S,6S)-2-amino-6-fluoro-4-hydroxybicyclo[3.1.0]-hexane-2,6-dicarboxylic acid]. MGS0028 had a low brain to plasma ratio at efficacious doses in rats and was eliminated more slowly in rat brain than in plasma. Exposure increased proportionally (1--10 mg/kg p.o.) in rats, with bioavailability>60% at all doses. However, bioavailability was only approximately 20% in monkeys, and MGS0034 was found in relatively high abundance in plasma. In dogs, oral bioavailability was >60%, and the metabolite was not detected. In vitro metabolism was examined in liver subcellular fractions (microsomes and cytosol) from rat, dog, monkey, and human. Reductive metabolism was observed in rat, monkey, and human liver cytosol incubations, but not in dog liver cytosol incubations. No metabolism of MGS0028 was detected in incubations with liver microsomes from any species. Similar to in vivo results, MGS0028 was reduced in cytosol stereospecifically to MGS0034. The rank order of in vitro metabolite formation (monkey >> rat approximately human >> dog) was in agreement with in vivo observations in rats, dogs, and monkeys. Based on the observation of species difference in reductive metabolism, rat and monkey were recommended to be the preclinical species for further characterization prior to testing in humans. Finally, allometric scaling predicts that human pharmacokinetic parameters would be acceptable for further development.


Subject(s)
Bridged Bicyclo Compounds/pharmacokinetics , Dicarboxylic Acids/pharmacokinetics , Excitatory Amino Acid Agonists/pharmacokinetics , Receptors, Metabotropic Glutamate/agonists , Animals , Bridged Bicyclo Compounds/blood , Bridged Bicyclo Compounds/cerebrospinal fluid , Bridged Bicyclo Compounds/urine , Carbon Radioisotopes , Cells, Cultured , Cerebellum/metabolism , Dicarboxylic Acids/blood , Dicarboxylic Acids/cerebrospinal fluid , Dicarboxylic Acids/urine , Dogs , Excitatory Amino Acid Agonists/blood , Excitatory Amino Acid Agonists/cerebrospinal fluid , Excitatory Amino Acid Agonists/urine , Feces/chemistry , Humans , Macaca mulatta , Male , Microsomes, Liver/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Species Specificity , Telencephalon/metabolism , Tissue Distribution
5.
Drug Metab Dispos ; 33(7): 1044-51, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15833927

ABSTRACT

Compound I [3-[5-(4-methanesulfonyl-piperazin-1-ylmethyl)-1H-indol-2-yl]-1H-quinolin-2-one] is a potent inhibitor of human kinase insert domain-containing receptor (KDR kinase), which is under investigation for the treatment of cancer. Bile duct-cannulated male beagle dogs were administered 6 mg/kg compound I q.d. for 14 days. There was an approximately 2.5-fold decrease in the mean plasma area under the curve of I on days 7 and 14 (approximately 11.3 microM . h), relative to day 1 (28.2 microM . h). In the dog, compound I was eliminated by metabolism, with a major pathway being aromatic hydroxylation and subsequent sulfation to form the metabolite M3. Metabolic profiling suggested that the pathway leading to the formation of the sulfated conjugate M3 was induced upon multiple dosing of I. Studies conducted in vitro suggested that CYP1A1/2 was responsible for the formation of the hydroxylated metabolite, which is sulfated to yield M3. Additional studies confirmed induction of CYP1A protein and activity in the livers of dogs treated with I. However, studies in a dog hepatocyte model of induction showed a surprising decrease both in CYP1A mRNA and enzymatic activity in the presence of I, emphasizing the need to consider the results from a variety of in vitro and in vivo studies in deriving an understanding of the metabolic fate of a drug candidate. It is concluded that the autoinduction observed after multiple treatments with compound I occurs since compound I is both an inducer and a substrate for dog CYP1A.


Subject(s)
Cytochrome P-450 CYP1A1/biosynthesis , Protein Kinase Inhibitors/pharmacology , Animals , Base Sequence , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1A1/genetics , DNA Primers , Dogs , Enzyme Induction , Hepatocytes/drug effects , Hepatocytes/enzymology , In Vitro Techniques , Male , Mass Spectrometry , Protein Kinase Inhibitors/pharmacokinetics
6.
Drug Metab Dispos ; 32(11): 1254-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15286054

ABSTRACT

The technique of accelerator mass spectrometry (AMS) was validated successfully and used to study the pharmacokinetics and disposition in dogs of a preclinical drug candidate (7-deaza-2'-C-methyl-adenosine; Compound A), after oral and intravenous administration. The primary objective of this study was to examine whether Compound A displayed linear kinetics across subpharmacological (microdose) and pharmacological dose ranges in an animal model, before initiation of a human microdose study. The AMS-derived disposition properties of Compound A were comparable to data obtained via conventional techniques such as liquid chromatography-tandem mass spectrometry and liquid scintillation counting analyses. Compound A displayed multiphasic kinetics and exhibited low plasma clearance (5.8 ml/min/kg), a long terminal elimination half-life (17.5 h), and high oral bioavailability (103%). Currently, there are no published comparisons of the kinetics of a pharmaceutical compound at pharmacological versus subpharmacological doses using microdosing strategies. The present study thus provides the first description of the full pharmacokinetic profile of a drug candidate assessed under these two dosing regimens. The data demonstrated that the pharmacokinetic properties of Compound A following dosing at 0.02 mg/kg were similar to those at 1 mg/kg, indicating that in the case of Compound A, the pharmacokinetics in the dog appear to be linear across this 50-fold dose range. Moreover, the exceptional sensitivity of AMS provided a pharmacokinetic profile of Compound A, even after a microdose, which revealed aspects of the disposition of this agent that were inaccessible by conventional techniques.


Subject(s)
Nucleosides/administration & dosage , Nucleosides/pharmacokinetics , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Animals , Chromatography, Liquid/methods , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Male , Mass Spectrometry/methods , Nucleosides/analysis , Pharmaceutical Preparations/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...