Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(9): e033317, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686869

ABSTRACT

BACKGROUND: Although moderate endurance exercise has been reported to improve cardiovascular health, its effects on cardiac structure and function are not fully characterized, especially with respect to sexual dimorphism. We aimed to assess the effects of moderate endurance exercise on cardiac physiology in male versus female mice. METHODS AND RESULTS: C57BL/6J mice of both sexes were run on a treadmill for 6 weeks. ECG and echocardiography were performed every 2 weeks. After 6 weeks of exercise, mice were euthanized, and triple parametric optical mapping was performed on Langendorff perfused hearts to assess cardiac electrophysiology. Arrhythmia inducibility was tested by programmed electrical stimulation. Left ventricular tissue was fixed, and RNA sequencing was performed to determine exercise-induced transcriptional changes. Exercise-induced left ventricular dilatation was observed in female mice alone, as evidenced by increased left ventricular diameter and reduced left ventricular wall thickness. Increased cardiac output was also observed in female exercised mice but not males. Optical mapping revealed further sexual dimorphism in exercise-induced modulation of cardiac electrophysiology. In female mice, exercise prolonged action potential duration and reduced voltage-calcium influx delay. In male mice, exercise reduced the calcium decay constant, suggesting faster calcium reuptake. Exercise increased arrhythmia inducibility in both male and female mice; however, arrhythmia duration was increased only in females. Lastly, exercise-induced transcriptional changes were sex dependent: females and males exhibited the most significant changes in contractile versus metabolism-related genes, respectively. CONCLUSIONS: Our data suggest that moderate endurance exercise can significantly alter multiple aspects of cardiac physiology in a sex-dependent manner. Although some of these effects are beneficial, like improved cardiac mechanical function, others are potentially proarrhythmic.


Subject(s)
Arrhythmias, Cardiac , Mice, Inbred C57BL , Physical Conditioning, Animal , Animals , Female , Male , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Physical Conditioning, Animal/physiology , Mice , Sex Factors , Ventricular Function, Left/physiology , Action Potentials , Physical Endurance/physiology , Ventricular Remodeling/physiology , Heart Rate/physiology , Isolated Heart Preparation , Sex Characteristics
2.
Sensors (Basel) ; 21(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34883814

ABSTRACT

Many activities require accurate wind and wave forecasts in the coastal ocean. The assimilation of fixed buoy observations into spectral wave models such as SWAN (Simulating Waves Nearshore) can provide improved estimates of wave forecasts fields. High-frequency (HF) radar observations provide a spatially expansive dataset in the coastal ocean for assimilation into wave models. A forward model for the HF Doppler spectrum based on first- and second-order Bragg scattering was developed to assimilate the HF radar wave observations into SWAN. This model uses the spatially varying wave spectra computed using the SWAN model, forecast currents from the Navy Coastal Ocean Model (NCOM), and system parameters from the HF radar sites to predict time-varying range-Doppler maps. Using an adjoint of the HF radar model, the error between these predictions and the corresponding HF Doppler spectrum observations can be translated into effective wave-spectrum errors for assimilation in the SWAN model for use in correcting the wind forcing in SWAN. The initial testing and validation of this system have been conducted using data from ten HF radar sites along the Southern California Bight during the CASPER-West experiment in October 2017. The improved winds compare positively to independent observation data, demonstrating that this algorithm can be utilized to fill an observational gap in the coastal ocean for winds and waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...