Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Article in English | MEDLINE | ID: mdl-37583705

ABSTRACT

Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.

2.
Transpl Int ; 36: 11279, 2023.
Article in English | MEDLINE | ID: mdl-37426429

ABSTRACT

Development of a post-transplant kidney transplant tolerance induction protocol involving a novel total lymphoid irradiation (TLI) conditioning method in a rhesus macaque model is described. We examined the feasibility of acheiving tolerance to MHC 1-haplotype matched kidney transplants by establishing a mixed chimeric state with infusion of donor hematopoietic cells (HC) using TomoTherapy TLI. The chimeric state was hypothesized to permit the elimination of all immunosuppressive (IS) medications while preserving allograft function long-term without development of graft-versus-host-disease (GVHD) or rejection. An experimental group of 11 renal transplant recipients received the tolerance induction protocol and outcomes were compared to a control group (n = 7) that received the same conditioning but without donor HC infusion. Development of mixed chimerism and operational tolerance was accomplished in two recipients in the experimental group. Both recipients were withdrawn from all IS and continued to maintain normal renal allograft function for 4 years without rejection or GVHD. None of the animals in the control group achieved tolerance when IS was eliminated. This novel experimental model demonstrated the feasibility for inducing of long-term operational tolerance when mixed chimerism is achieved using a TLI post-transplant conditioning protocol in 1-haplotype matched non-human primate recipients of combined kidney and HC transplantation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Kidney Transplantation , Radiotherapy, Intensity-Modulated , Animals , Macaca mulatta , Lymphatic Irradiation , Immune Tolerance , Transplantation Tolerance , Transplantation Conditioning/methods , Kidney , Transplantation Chimera
3.
Bioelectron Med ; 9(1): 9, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37118841

ABSTRACT

BACKGROUND: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

4.
Magn Reson Med ; 89(2): 710-720, 2023 02.
Article in English | MEDLINE | ID: mdl-36128887

ABSTRACT

PURPOSE: In current intraoperative MRI (IMRI) methods, an iterative approach is used to aim trajectory guides at intracerebral targets: image MR-visible features, determine current aim by fitting model to image, manipulate device, repeat. Infrequent updates are produced by such methods, compared to rapid optically tracked stereotaxy used in the operating room. Our goal was to develop a real-time interactive IMRI method for aiming. METHODS: The current trajectory was computed from two points along the guide's central axis, rather than by imaging the entire device. These points were determined by correlating one-dimensional spokes from a radial sequence with the known cross-sectional projection of the guide. The real-time platform RTHawk was utilized to control MR sequences and data acquisition. On-screen updates were viewed by the operator while simultaneously manipulating the guide to align it with the planned trajectory. Accuracy was quantitated in a phantom, and in vivo validation was demonstrated in nonhuman primates undergoing preclinical gene ( n = 5 $$ n=5 $$ ) and cell ( n = 4 $$ n=4 $$ ) delivery surgeries. RESULTS: Updates were produced at 5 Hz In 10 phantom experiments at a depth of 48 mm, the cannula tip was placed with radial error of (min, mean, max) = (0.16, 0.29, 0.68) mm. Successful in vivo delivery of payloads to all 14 targets was demonstrated across nine surgeries with depths of (min, mean, max) = (33.3, 37.9, 42.5) mm. CONCLUSION: A real-time interactive update rate was achieved, reducing operator fatigue without compromising accuracy. Qualitative interpretation of images during aiming was rendered unnecessary by objectively computing device alignment.


Subject(s)
Neurosurgery , Animals , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Imaging, Three-Dimensional
5.
Sensors (Basel) ; 22(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36366153

ABSTRACT

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.


Subject(s)
Deep Learning , Spinal Cord Injuries , Animals , Electromyography/methods , Neural Networks, Computer , Machine Learning , Spinal Cord Injuries/diagnosis , Macaca fascicularis
6.
Biol Reprod ; 107(6): 1517-1527, 2022 12 10.
Article in English | MEDLINE | ID: mdl-36018823

ABSTRACT

Identification of placental dysfunction in early pregnancy with noninvasive imaging could be a valuable tool for assessing maternal and fetal risk. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) can be a powerful tool for interrogating placenta health. After inoculation with Zika virus or sham inoculation at gestation age (GA) 45 or 55 days, animals were imaged up to three times at GA65, GA100, and GA145. DCE MRI images were acquired at all imaging sessions using ferumoxytol, an iron nanoparticle-based contrast agent, and analyzed for placental intervillous blood flow, number of perfusion domains, and perfusion domain volume. Cesarean section was performed at GA155, and the placenta was photographed and dissected for histopathology. Photographs were used to align cotyledons with estimated perfusion domains from MRI, allowing comparison of estimated cotyledon volume to pathology. Monkeys were separated into high and low pathology groups based on the average number of pathologies present in the placenta. Perfusion domain flow, volume, and number increased through gestation, and total blood flow increased with gestation for both low pathology and high pathology groups. A statistically significant decrease in perfusion domain volume associated with pathology was detected at all gestational ages. Individual perfusion domain flow comparisons demonstrated a statistically significant decrease with pathology at GA100 and GA145, but not GA65. Since ferumoxytol is currently used to treat anemia during human pregnancy and as an off-label MRI contrast agent, future transition of this work to human pregnancy may be possible.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Pregnancy , Female , Humans , Infant , Placenta/blood supply , Ferrosoferric Oxide , Macaca mulatta , Contrast Media , Cotyledon , Cesarean Section , Magnetic Resonance Imaging/methods , Perfusion , Zika Virus Infection/pathology
7.
Neurobiol Dis ; 171: 105814, 2022 09.
Article in English | MEDLINE | ID: mdl-35817217

ABSTRACT

Barbiturates and benzodiazepines are GABAA-receptor agonists and potent antiseizure medications. We reported that exposure of neonatal macaques to combination of phenobarbital and midazolam (Pb/M) for 24 h, at clinically relevant doses and plasma levels, causes widespread apoptosis affecting neurons and oligodendrocytes. Notably, the extent of injury was markedly more severe compared to shorter (8 h) exposure to these drugs. We also reported that, in the infant macaque, mild hypothermia ameliorates the apoptosis response to the anesthetic sevoflurane. These findings prompted us explore whether mild hypothermia might protect infant nonhuman primates from neuro- and gliotoxicity of Pb/M. Since human infants with seizures may receive combinations of benzodiazepines and barbiturates for days, we opted for 24 h treatment with Pb/M. Neonatal rhesus monkeys received phenobarbital intravenously, followed by midazolam infusion over 24 h under normothermia (T > 36.5 °C-37.5 °C; n = 4) or mild hypothermia (T = 35 °C-36.5 °C; n = 5). Medication doses and blood levels measured were comparable to those in human infants. Animals were euthanized at 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated. Extensive degeneration of neurons and oligodendrocytes was seen at 36 h in both groups within neocortex, basal ganglia, hippocampus and brainstem. Mild hypothermia over 36 h (maintained until terminal perfusion) conferred no protection against the neurotoxic and gliotoxic effects of Pb/M. This is in marked contrast to our previous findings that mild hypothermia is protective in the context of a 5 h-long exposure to sevoflurane in infant macaques. These findings demonstrate that brain injury caused by prolonged exposure to Pb/M in the neonatal primate cannot be ameliorated by mild hypothermia.


Subject(s)
Brain Injuries , Hypothermia, Induced , Hypothermia , Animals , Brain , Brain Injuries/chemically induced , Brain Injuries/drug therapy , Brain Injuries/prevention & control , Humans , Infant , Infant, Newborn , Lead/pharmacology , Macaca mulatta , Midazolam/pharmacology , Phenobarbital/toxicity , Sevoflurane/pharmacology
8.
Radiat Res ; 196(6): 623-632, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34388816

ABSTRACT

Development of a new methodology to induce immunological chimerism after allogeneic hematopoietic cell (HC) transplantation in a rhesus macaque model is described. The chimeric state was achieved using a non-myeloablative, helical tomotherapy-based total lymphoid irradiation (TomoTLI) conditioning regimen followed by donor HC infusions between 1-haplotype matched donor/recipient pairs. The technique was tested as a feasibility study in an experimental group of seven rhesus macaques that received the novel TomoTLI tolerance protocol and HC allo-transplants. Two tomotherapy protocols were compared: TomoTLI (n = 5) and TomoTLI/total-body irradiation (TBI) (n = 2). Five of seven animals developed mixed chimerism. Three of five animals given the TomoTLI protocol generated transient mixed chimerism with no graft-versus-host disease (GVHD) with survival of 33, 152 and >180 days. However, the inclusion of belatacept in addition to a single fraction of TBI resulted in total chimerism and fatal GVHD in both animals, indicating an unacceptable conditioning regimen.


Subject(s)
Chimerism , Hematopoietic Stem Cell Transplantation , Lymphoid Tissue/radiation effects , Models, Biological , Radiotherapy, Intensity-Modulated/methods , Animals , Graft vs Host Disease , Macaca mulatta , Models, Animal , Transplantation, Homologous
9.
Nat Med ; 27(4): 632-639, 2021 04.
Article in English | MEDLINE | ID: mdl-33649496

ABSTRACT

Degeneration of dopamine (DA) neurons in the midbrain underlies the pathogenesis of Parkinson's disease (PD). Supplement of DA via L-DOPA alleviates motor symptoms but does not prevent the progressive loss of DA neurons. A large body of experimental studies, including those in nonhuman primates, demonstrates that transplantation of fetal mesencephalic tissues improves motor symptoms in animals, which culminated in open-label and double-blinded clinical trials of fetal tissue transplantation for PD1. Unfortunately, the outcomes are mixed, primarily due to the undefined and unstandardized donor tissues1,2. Generation of induced pluripotent stem cells enables standardized and autologous transplantation therapy for PD. However, its efficacy, especially in primates, remains unclear. Here we show that over a 2-year period without immunosuppression, PD monkeys receiving autologous, but not allogenic, transplantation exhibited recovery from motor and depressive signs. These behavioral improvements were accompanied by robust grafts with extensive DA neuron axon growth as well as strong DA activity in positron emission tomography (PET). Mathematical modeling reveals correlations between the number of surviving DA neurons with PET signal intensity and behavior recovery regardless autologous or allogeneic transplant, suggesting a predictive power of PET and motor behaviors for surviving DA neuron number.


Subject(s)
Behavior, Animal , Depression/complications , Fetal Tissue Transplantation , Motor Activity , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Animals , Dopamine/metabolism , Induced Pluripotent Stem Cells/metabolism , Inflammation/pathology , Linear Models , Macaca mulatta , Male , Mesencephalon/transplantation , Mice , Parkinson Disease/complications , Positron-Emission Tomography , Transplantation, Autologous , Transplantation, Homologous , Tyrosine 3-Monooxygenase/metabolism
10.
Neurobiol Dis ; 149: 105245, 2021 02.
Article in English | MEDLINE | ID: mdl-33385515

ABSTRACT

Barbiturates and benzodiazepines are potent GABAA receptor agonists and strong anticonvulsants. In the developing brain they can cause neuronal and oligodendroglia apoptosis, impair synaptogenesis, inhibit neurogenesis and trigger long-term neurocognitive sequelae. In humans, the vulnerable period is projected to extend from the third trimester of pregnancy to the third year of life. Infants with seizures and epilepsies may receive barbiturates, benzodiazepines and their combinations for days, months or years. How exposure duration affects neuropathological sequelae is unknown. Here we investigated toxicity of phenobarbital/midazolam (Pb/M) combination in the developing nonhuman primate brain. Neonatal rhesus monkeys received phenobarbital intravenously, followed by infusion of midazolam over 5 (n = 4) or 24 h (n = 4). Animals were euthanized at 8 or 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated, physiological parameters remained at optimal levels. Compared to naïve controls, Pb/M exposed brains displayed widespread apoptosis affecting neurons and oligodendrocytes. Pattern and severity of cell death differed depending on treatment-duration, with more extensive neurodegeneration following longer exposure. At 36 h, areas of the brain not affected at 8 h displayed neuronal apoptosis, while oligodendroglia death was most prominent at 8 h. A notable feature at 36 h was degeneration of neuronal tracts and trans-neuronal death of neurons, presumably following their disconnection from degenerated presynaptic partners. These findings demonstrate that brain toxicity of Pb/M in the neonatal primate brain becomes more severe with longer exposures and expands trans-synaptically. Impact of these sequelae on neurocognitive outcomes and the brain connectome will need to be explored.


Subject(s)
Anticonvulsants/administration & dosage , Anticonvulsants/toxicity , Brain/drug effects , Brain/pathology , Animals , Animals, Newborn , Drug Administration Schedule , Macaca mulatta
11.
Am J Transplant ; 20(6): 1513-1526, 2020 06.
Article in English | MEDLINE | ID: mdl-31922336

ABSTRACT

Delayed graft function (DGF) in renal transplant is associated with reduced graft survival and increased immunogenicity. The complement-driven inflammatory response after brain death (BD) and posttransplant reperfusion injury play significant roles in the pathogenesis of DGF. In a nonhuman primate model, we tested complement-blockade in BD donors to prevent DGF and improve graft survival. BD donors were maintained for 20 hours; kidneys were procured and stored at 4°C for 43-48 hours prior to implantation into ABO-compatible, nonsensitized, MHC-mismatched recipients. Animals were divided into 3 donor-treatment groups: G1 - vehicle, G2 - rhC1INH+heparin, and G3 - heparin. G2 donors showed significant reduction in classical complement pathway activation and decreased levels of tumor necrosis factor α and monocyte chemoattractant protein 1. DGF was diagnosed in 4/6 (67%) G1 recipients, 3/3 (100%) G3 recipients, and 0/6 (0%) G2 recipients (P = .008). In addition, G2 recipients showed superior renal function, reduced sC5b-9, and reduced urinary neutrophil gelatinase-associated lipocalin in the first week posttransplant. We observed no differences in incidence or severity of graft rejection between groups. Collectively, the data indicate that donor-management targeting complement activation prevents the development of DGF. Our results suggest a pivotal role for complement activation in BD-induced renal injury and postulate complement blockade as a promising strategy for the prevention of DGF after transplantation.


Subject(s)
Kidney Transplantation , Animals , Brain Death , Delayed Graft Function/etiology , Delayed Graft Function/prevention & control , Graft Survival , Humans , Kidney Transplantation/adverse effects , Primates , Risk Factors , Tissue Donors
12.
Biol Reprod ; 102(2): 434-444, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31511859

ABSTRACT

Ferumoxytol is a superparamagnetic iron oxide nanoparticle used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent. Additionally, ferumoxytol-uptake by macrophages facilitates detection of inflammatory sites by MRI through ferumoxytol-induced image contrast changes. Therefore, ferumoxytol-enhanced MRI holds great potential for assessing vascular function and inflammatory response, critical to determine placental health in pregnancy. This study sought to assess the fetoplacental unit and selected maternal tissues, pregnancy outcomes, and fetal well-being after ferumoxytol administration. In initial developmental studies, seven pregnant rhesus macaques were imaged with or without ferumoxytol administration. Pregnancies went to term with vaginal delivery and infants showed normal growth rates compared to control animals born the same year that did not undergo MRI. To determine the impact of ferumoxytol on the maternal-fetal interface (MFI), fetal well-being, and pregnancy outcome, four pregnant rhesus macaques at ~100 gestational day underwent MRI before and after ferumoxytol administration. Collection of the fetoplacental unit and selected maternal tissues was performed 2-3 days following ferumoxytol administration. A control group that did not receive ferumoxytol or MRI was used for comparison. Iron levels in fetal and MFI tissues did not differ between groups, and there was no significant difference in tissue histopathology with or without exposure to ferumoxytol, and no effect on placental hormone secretion. Together, these results suggest that the use of ferumoxytol and MRI in pregnant rhesus macaques does not negatively impact the MFI and can be a valuable experimental tool in research with this important animal model.


Subject(s)
Contrast Media/administration & dosage , Endometrium/diagnostic imaging , Ferrosoferric Oxide/administration & dosage , Fetal Development/drug effects , Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Animals , Endometrium/drug effects , Female , Macaca mulatta , Placenta/drug effects , Pregnancy
13.
Sensors (Basel) ; 19(15)2019 Jul 27.
Article in English | MEDLINE | ID: mdl-31357572

ABSTRACT

This study aims to characterize traumatic spinal cord injury (TSCI) neurophysiologically using an intramuscular fine-wire electromyography (EMG) electrode pair. EMG data were collected from an agonist-antagonist pair of tail muscles of Macaca fasicularis, pre- and post-lesion, and for a treatment and control group. The EMG signals were decomposed into multi-resolution subsets using wavelet transforms (WT), then the relative power (RP) was calculated for each individual reconstructed EMG sub-band. Linear mixed models were developed to test three hypotheses: (i) asymmetrical volitional activity of left and right side tail muscles (ii) the effect of the experimental TSCI on the frequency content of the EMG signal, (iii) and the effect of an experimental treatment. The results from the electrode pair data suggested that there is asymmetry in the EMG response of the left and right side muscles (p-value < 0.001). This is consistent with the construct of limb dominance. The results also suggest that the lesion resulted in clear changes in the EMG frequency distribution in the post-lesion period with a significant increment in the low-frequency sub-bands (D4, D6, and A6) of the left and right side, also a significant reduction in the high-frequency sub-bands (D1 and D2) of the right side (p-value < 0.001). The preliminary results suggest that using the RP of the EMG data, the fine-wire intramuscular EMG electrode pair are a suitable method of monitoring and measuring treatment effects of experimental treatments for spinal cord injury (SCI).


Subject(s)
Muscle, Skeletal/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging , Wounds and Injuries/diagnostic imaging , Animals , Disease Models, Animal , Electrodes, Implanted , Electromyography , Humans , Macaca fascicularis , Muscle, Skeletal/physiology , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/physiopathology , Tail/physiology , Wounds and Injuries/diagnosis , Wounds and Injuries/physiopathology
14.
Neurobiol Dis ; 130: 104489, 2019 10.
Article in English | MEDLINE | ID: mdl-31175984

ABSTRACT

Sedatives and anesthetics can injure the developing brain. They cause apoptosis of neurons and oligodendrocytes, impair synaptic plasticity, inhibit neurogenesis and trigger long-term neurocognitive deficits. The projected vulnerable period in humans extends from the third trimester of pregnancy to the third year of life. Despite all concerns, there is no ethically and medically acceptable alternative to the use of sedatives and anesthetics for surgeries and painful interventions. Development of measures that prevent injury while allowing the medications to exert their desired actions has enormous translational value. Here we investigated protective potential of hypothermia against histological toxicity of the anesthetic sevoflurane in the developing nonhuman primate brain. Neonatal rhesus monkeys underwent sevoflurane anesthesia over 5 h. Body temperature was regulated in the normothermic (>36.5 °C), mild hypothermic (35-36.5 °C) and moderately hypothermic (<35 °C) range. Animals were euthanized at 8 h and brains examined immunohistochemically (activated caspase 3) and stereologically to quantify apoptotic neuronal and oligodendroglial death. Sevoflurane anesthesia was well tolerated at all temperatures, with oxygen saturations, end tidal CO2 and blood gases remaining at optimal levels. Compared to controls, sevoflurane exposed brains displayed significant apoptosis in gray and white matter affecting neurons and oligodendrocytes. Mild hypothermia (35-36.5 °C) conferred significant protection from apoptotic brain injury, whereas moderate hypothermia (<35 °C) did not. Hypothermia ameliorates anesthesia-induced apoptosis in the neonatal primate brain within a narrow temperature window (35-36.5 °C). Protection is lost at temperatures below 35 °C. Given the mild degree of cooling needed to achieve significant brain protection, application of our findings to humans should be explored further.


Subject(s)
Anesthetics, Inhalation/toxicity , Brain/pathology , Hypothermia, Induced/methods , Sevoflurane/toxicity , Animals , Animals, Newborn , Apoptosis/drug effects , Brain/drug effects , Macaca mulatta , Neurons/drug effects , Neurons/pathology
15.
Transplantation ; 103(9): 1821-1833, 2019 09.
Article in English | MEDLINE | ID: mdl-30964836

ABSTRACT

BACKGROUND: Brain death (BD)-associated inflammation has been implicated in decreased kidney allograft function and survival, but the underlying mechanisms have not been well distinguished from the conditions of critical care itself. We have developed a clinically translatable model to separate and investigate strategies to improve donor management and critical care. METHODS: Brain-dead (n = 12) and sham (n = 5) rhesus macaques were maintained for 20 hours under intensive care unit-level conditions. Samples were collected for immunophenotyping, analysis of plasma proteins, coagulation studies, and gene analysis for changes in immune and metabolic profile with comparison to naive samples (n = 10). RESULTS: We observed an increase in circulating leukocytes and cytokines, activation of complement and coagulation pathways, and upregulation of genes associated with inflammation in both brain-dead and sham subjects relative to naïve controls. Sham demonstrated an intermediate phenotype of inflammation compared to BD. Analysis of gene expression in kidneys from BD kidneys revealed a similar upregulation of inflammatory profile in both BD and sham subjects, but BD presented a distinct reduction in metabolic and respiratory processes compared to sham and naïve kidneys. CONCLUSION: BD is associated with activation of specific pathways of the innate immune system and changes to metabolic gene expression in renal tissue itself; however, sham donors presented an intermediate inflammatory response attributable to the critical care environment. The early onset and penetrating impact of this inflammatory response underscores the need for early intervention to prevent perioperative tissue injury to transplantable organs.


Subject(s)
Brain Death/immunology , Brain Death/metabolism , Energy Metabolism/genetics , Immunity, Innate/genetics , Inflammation/immunology , Inflammation/metabolism , Kidney/metabolism , Animals , Biomarkers/blood , Blood Coagulation/genetics , Blood Coagulation Factors/genetics , Blood Coagulation Factors/metabolism , Complement Activation/genetics , Critical Care , Cytokines/blood , Cytokines/genetics , Disease Models, Animal , Gene Expression Regulation , Inflammation/blood , Inflammation/genetics , Macaca mulatta , Time Factors
16.
Neurobiol Dis ; 127: 554-562, 2019 07.
Article in English | MEDLINE | ID: mdl-30951850

ABSTRACT

Apoptosis is triggered in the developing mammalian brain by sedative, anesthetic or antiepileptic drugs during late gestation and early life. Whether human children are vulnerable to this toxicity mechanism remains unknown, as there are no imaging techniques to capture it. Apoptosis is characterized by distinct structural features, which affect the way damaged tissue scatters ultrasound compared to healthy tissue. We evaluated whether apoptosis, triggered by the anesthetic sevoflurane in the brains of neonatal rhesus macaques, can be detected using quantitative ultrasound (QUS). Neonatal (n = 15) rhesus macaques underwent 5 h of sevoflurane anesthesia. QUS images were obtained through the sagittal suture at 0.5 and 6 h. Brains were collected at 8 h and examined immunohistochemically to analyze apoptotic neuronal and oligodendroglial death. Significant apoptosis was detected in white and gray matter throughout the brain, including the thalamus. We measured a change in the effective scatterer size (ESS), a QUS biomarker derived from ultrasound echo signals obtained with clinical scanners, after sevoflurane-anesthesia in the thalamus. Although initial inclusion of all measurements did not reveal a significant correlation, when outliers were excluded, the change in the ESS between the pre- and post-anesthesia measurements correlated strongly and proportionally with the severity of apoptotic death. We report for the first time in vivo changes in QUS parameters, which may reflect severity of apoptosis in the brains of infant nonhuman primates. These findings suggest that QUS may enable in vivo studies of apoptosis in the brains of human infants following exposure to anesthetics, antiepileptics and other brain injury mechanisms.


Subject(s)
Apoptosis/physiology , Brain/diagnostic imaging , Sevoflurane/pharmacology , Animals , Animals, Newborn , Apoptosis/drug effects , Brain/drug effects , Female , Macaca mulatta , Male , Neurons/drug effects , Oligodendroglia/drug effects , Ultrasonography
17.
NPJ Parkinsons Dis ; 4: 22, 2018.
Article in English | MEDLINE | ID: mdl-30038956

ABSTRACT

Loss of cardiac postganglionic sympathetic innervation is a characteristic pathology of Parkinson's disease (PD). It progresses over time independently of motor symptoms and is not responsive to typical anti-parkinsonian therapies. Cardiac sympathetic neurodegeneration can be mimicked in animals using systemic dosing of the neurotoxin 6-hydroxydopamine (6-OHDA). As in PD, 6-OHDA-induced neuronal loss is associated with increased inflammation and oxidative stress. To assess the feasibility of detecting changes over time in cardiac catecholaminergic innervation, inflammation, and oxidative stress, myocardial positron emission tomography with the radioligands [11C]meta-hydroxyephedrine (MHED), [11C]PBR28 (PBR28), and [61Cu]diacetyl-bis(N(4))-methylthiosemicarbazone (ATSM) was performed in 6-OHDA-intoxicated adult, male rhesus macaques (n = 10; 50 mg/kg i.v.). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone, which is known to have anti-inflammatory and anti-oxidative stress properties, was administered to five animals (5 mg/kg, PO); the other five were placebo-treated. One week after 6-OHDA, cardiac MHED uptake was significantly reduced in both groups (placebo, 86% decrease; pioglitazone, 82%); PBR28 and ATSM uptake increased in both groups but were attenuated in pioglitazone-treated animals (PBR28 Treatment × Level ANOVA p < 0.002; ATSM Mann-Whitney p = 0.032). At 12 weeks, partial recovery of MHED uptake was significantly greater in the pioglitazone-treated group, dependent on left ventricle circumferential region and axial level (Treatment × Region × Level ANOVA p = 0.034); 12-week MHED uptake significantly correlated with tyrosine hydroxylase immunoreactivity across cardiac anatomy (p < 0.000002). PBR28 and ATSM uptake returned to baseline levels by 12 weeks. These radioligands thus hold potential as in vivo biomarkers of mechanisms of cardiac neurodegeneration and neuroprotection.

18.
PLoS Pathog ; 13(10): e1006692, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29073258

ABSTRACT

Human pegivirus (HPgV) protects HIV+ people from HIV-associated disease, but the mechanism of this protective effect remains poorly understood. We sequentially infected cynomolgus macaques with simian pegivirus (SPgV) and simian immunodeficiency virus (SIV) to model HIV+HPgV co-infection. SPgV had no effect on acute-phase SIV pathogenesis-as measured by SIV viral load, CD4+ T cell destruction, immune activation, or adaptive immune responses-suggesting that HPgV's protective effect is exerted primarily during the chronic phase of HIV infection. We also examined the immune response to SPgV in unprecedented detail, and found that this virus elicits virtually no activation of the immune system despite persistently high titers in the blood over long periods of time. Overall, this study expands our understanding of the pegiviruses-an understudied group of viruses with a high prevalence in the global human population-and suggests that the protective effect observed in HIV+HPgV co-infected people occurs primarily during the chronic phase of HIV infection.


Subject(s)
Coinfection/virology , Flaviviridae Infections/immunology , Flaviviridae Infections/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Animals , Coinfection/immunology , Disease Models, Animal , GB virus C , Macaca fascicularis , Simian Immunodeficiency Virus
19.
PLoS One ; 12(9): e0182552, 2017.
Article in English | MEDLINE | ID: mdl-28926566

ABSTRACT

INTRODUCTION: The development of a translatable brain death animal model has significant potential to advance not only transplant research, but also the understanding of the pathophysiologic changes that occur in brain death and severe traumatic brain injury. The aim of this paper is to describe a rhesus macaque model of brain death designed to simulate the average time and medical management described in the human literature. METHODS: Following approval by the Institutional Animal Care and Use Committee, a brain death model was developed. Non-human primates were monitored and maintained for 20 hours after brain death induction. Vasoactive agents and fluid boluses were administered to maintain hemodynamic stability. Endocrine derangements, particularly diabetes insipidus, were aggressively managed. RESULTS: A total of 9 rhesus macaque animals were included in the study. The expected hemodynamic instability of brain death in a rostral to caudal fashion was documented in terms of blood pressure and heart rate changes. During the maintenance phase of brain death, the animal's temperature and hemodynamics were maintained with goals of mean arterial pressure greater than 60mmHg and heart rate within 20 beats per minute of baseline. Resuscitation protocols are described so that future investigators may reproduce this model. CONCLUSION: We have developed a reproducible large animal primate model of brain death which simulates clinical scenarios and treatment. Our model offers the opportunity for researchers to have translational model to test the efficacy of therapeutic strategies prior to human clinical trials.


Subject(s)
Brain Death/physiopathology , Disease Models, Animal , Algorithms , Animals , Blood Pressure/drug effects , Brain Death/veterinary , Fluid Therapy , Guidelines as Topic , Heart Rate/drug effects , Hemodynamics/drug effects , Kidney/pathology , Liver/pathology , Macaca mulatta , Monitoring, Physiologic , Pancreas/pathology , Tissue Donors , Vasoconstrictor Agents/pharmacology , Ventilators, Mechanical
20.
J Clin Apher ; 32(5): 288-294, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27578423

ABSTRACT

BACKGROUND: Nonhuman primates, particularly rhesus macaques, are ideal preclinical large animal models to investigate organ tolerance induction protocols using donor hematopoietic stem cells (HSCs) to induce chimerism. Their relatively small size poses some challenges for the safe and effective collection of peripheral blood HSCs through apheresis procedures. We describe our experiences using the Spectra Optia apheresis unit to successfully obtain HSCs from mobilized peripheral blood of rhesus macaques. METHOD: Mobilization of peripheral blood HSCs was induced using granulocyte stimulating factor (G-CSF) and Mozobil. The Spectra Optia unit was used in 18 apheresis procedures in 13 animals (4.9-10 kg). Animal health was carefully monitored during and after the procedure. Changes in peripheral blood cells before, during and after procedure were determined by complete blood count and flow cytometry. RESULTS: The automatic settings of the Spectra Optia unit were applied successfully to the procedures on the rhesus macaque. All animals tolerated the procedure well with no mortality. Mobilization of HSCs were most consistently achieved using 50 µg/kg of G-CSF for 5 days and a single dose of Mozobil on the 5th day, followed by collection of cells 3 h after Mozobil injection. The final apheresis product contained an average of 23 billion total nucleated cells with 47% granulocytes, 3,871 million total CD3 cells and 77 million CD34 cells which resulted in an average of 10 million CD34+ cells/kg of donor weight. CONCLUSION: Apheresis of peripheral blood mobilized HSCs in rhesus macaques using Spectra Optia is a safe and effective procedure.


Subject(s)
Antigens, CD34/metabolism , Blood Component Removal/veterinary , Hematopoietic Stem Cell Mobilization/veterinary , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Macaca mulatta/immunology , Animals , Benzylamines , Blood Cell Count , Blood Component Removal/instrumentation , Blood Component Removal/methods , Cyclams , Feasibility Studies , Flow Cytometry , Granulocyte Colony-Stimulating Factor/administration & dosage , Hematopoietic Stem Cell Mobilization/instrumentation , Hematopoietic Stem Cell Mobilization/methods , Heterocyclic Compounds/administration & dosage , Peripheral Blood Stem Cells/cytology , Peripheral Blood Stem Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...