Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37626775

ABSTRACT

In medicine, C-reactive protein (CRP) has become established primarily as a biomarker, predicting patient prognosis in many indications. Recently, however, there has been mounting evidence that it causes inflammatory injury. As early as 1999, CRP was shown to induce cell death after acute myocardial infarction (AMI) in rats and this was found to be dependent on complement. The pathological effect of CRP was subsequently confirmed in further animal species such as rabbit, mouse and pig. A conceptual gap was recently closed when it was demonstrated that ischemia in AMI or ischemia/hypoxia in the severe course of COVID-19 causes a drastic lack of energy in involved cells, resulting in an apoptotic presentation because these cells cannot repair/flip-flop altered lipids. The deprivation of energy leads to extensive expression on the cell membranes of the CRP ligand lysophosphatidylcholine. Upon attachment of CRP to this ligand, the classical complement pathway is triggered leading to the swift elimination of viable cells with the appearance of an apoptotic cell by phagocytes. They are being eaten alive. This, consequently, results in substantial fibrotic remodeling within the involved tissue. Inhibiting this pathomechanism via CRP-targeting therapy has been shown to be beneficial in different indications.

2.
J Clin Med ; 11(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35407379

ABSTRACT

C-reactive protein (CRP), the prototype human acute phase protein, may be causally involved in various human diseases. As CRP has appeared much earlier in evolution than antibodies and nonetheless partly utilizes the same biological structures, it is likely that CRP has been the first antibody-like molecule in the evolution of the immune system. Like antibodies, CRP may cause autoimmune reactions in a variety of human pathologies. Consequently, therapeutic targeting of CRP may be of utmost interest in human medicine. Over the past two decades, however, pharmacological targeting of CRP has turned out to be extremely difficult. Currently, the easiest, most effective and clinically safest method to target CRP in humans may be the specific extracorporeal removal of CRP by selective apheresis. The latter has recently shown promising therapeutic effects, especially in acute myocardial infarction and COVID-19 pneumonia. This review summarizes the pros and cons of applying this novel technology to patients suffering from various diseases, with a focus on its use in cardiovascular medicine.

3.
J Clin Med ; 11(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35207331

ABSTRACT

Recently, C-reactive protein (CRP) was shown to affect intracellular calcium signaling and blood pressure in vitro and in vivo, respectively. The aim of the present study was to further investigate if a direct effect on G-protein coupled receptor (GPCR) signaling by CRP can be observed by using CRP in combination with different GPCR agonists on spontaneously beating cultured neonatal rat cardiomyocytes. All used agonists (isoprenaline, clenbuterol, phenylephrine, angiotensin II and endothelin 1) affected the beat rate of cardiomyocytes significantly and after washing them out and re-stimulation the cells developed a pronounced desensitization of the corresponding receptors. CRP did not affect the basal beating-rate nor the initial increase/decrease in beat-rate triggered by different agonists. However, CRP co-incubated cells did not exhibit desensitization of the respective GPCRs after the stimulation with the different agonists. This lack of desensitization was independent of the GPCR type, but it was dependent on the CRP concentration. Therefore, CRP interferes with the desensitization of GPCRs and has to be considered as a novel regulator of adrenergic, angiotensin-1 and endothelin receptors.

4.
Front Immunol ; 12: 630430, 2021.
Article in English | MEDLINE | ID: mdl-33679775

ABSTRACT

C-reactive protein (CRP) is the best-known acute phase protein. In humans, almost every type of inflammation is accompanied by an increase of CRP concentration. Until recently, the only known physiological function of CRP was the marking of cells to initiate their phagocytosis. This triggers the classical complement pathway up to C4, which helps to eliminate pathogens and dead cells. However, vital cells with reduced energy supply are also marked, which is useful in the case of a classical external wound because an important substrate for pathogens is disposed of, but is counterproductive at internal wounds (e.g., heart attack or stroke). This mechanism negatively affects clinical outcomes since it is established that CRP levels correlate with the prognosis of these indications. Here, we summarize what we can learn from a clinical study in which CRP was adsorbed from the bloodstream by CRP-apheresis. Recently, it was shown that CRP can have a direct effect on blood pressure in rabbits. This is interesting in regard to patients with high inflammation, as they often become tachycardic and need catecholamines. These two physiological effects of CRP apparently also occur in COVID-19. Parts of the lung become ischemic due to intra-alveolar edema and hemorrhage and in parallel CRP increases dramatically, hence it is assumed that CRP is also involved in this ischemic condition. It is meanwhile considered that most of the damage in COVID-19 is caused by the immune system. The high amounts of CRP could have an additional influence on blood pressure in severe COVID-19.


Subject(s)
C-Reactive Protein/immunology , COVID-19/immunology , Myocardial Infarction/immunology , SARS-CoV-2/immunology , Stroke/immunology , Animals , Cell Death/immunology , Cell Hypoxia/immunology , Complement C4/immunology , Humans , Rabbits
5.
Front Immunol ; 11: 1978, 2020.
Article in English | MEDLINE | ID: mdl-32983135

ABSTRACT

Systemic diseases characterized by elevated levels of C-reactive protein (CRP), such as sepsis or systemic inflammatory response syndrome, are usually associated with hardly controllable haemodynamic instability. We therefore investigated whether CRP itself influences blood pressure and heart rate. Immediately after intravenous injection of purified human CRP (3.5 mg CRP/kg body weight) into anesthetized rabbits, blood pressure dropped critically in all animals, while control animals injected with bovine serum albumin showed no response. Heart rate did not change in either group. Approaching this impact on a cellular level, we investigated the effect of CRP in cell lines expressing adrenoceptors (CHO-α1A and DU-145). CRP caused a Ca2+ signaling being dependent on the CRP dose. After complete activation of the adrenoceptors by agonists, CRP caused additional intracellular Ca2+ mobilization. We assume that CRP interacts with hitherto unknown structures on the surface of vital cells and thus interferes with the desensitization of adrenoceptors.


Subject(s)
Blood Pressure , C-Reactive Protein/metabolism , Calcium Signaling , Calcium/metabolism , Animals , Biomarkers , Blood Pressure/drug effects , C-Reactive Protein/pharmacology , Calcium Signaling/drug effects , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Humans , Intracellular Space/metabolism , Rabbits , Sepsis/blood , Sepsis/etiology , Sepsis/metabolism , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/metabolism
6.
J Clin Med ; 9(9)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932587

ABSTRACT

Almost every kind of inflammation in the human body is accompanied by rising C-reactive protein (CRP) concentrations. This can include bacterial and viral infection, chronic inflammation and so-called sterile inflammation triggered by (internal) acute tissue injury. CRP is part of the ancient humoral immune response and secreted into the circulation by the liver upon respective stimuli. Its main immunological functions are the opsonization of biological particles (bacteria and dead or dying cells) for their clearance by macrophages and the activation of the classical complement pathway. This not only helps to eliminate pathogens and dead cells, which is very useful in any case, but unfortunately also to remove only slightly damaged or inactive human cells that may potentially regenerate with more CRP-free time. CRP action severely aggravates the extent of tissue damage during the acute phase response after an acute injury and therefore negatively affects clinical outcome. CRP is therefore a promising therapeutic target to rescue energy-deprived tissue either caused by ischemic injury (e.g., myocardial infarction and stroke) or by an overcompensating immune reaction occurring in acute inflammation (e.g., pancreatitis) or systemic inflammatory response syndrome (SIRS; e.g., after transplantation or surgery). Selective CRP apheresis can remove circulating CRP safely and efficiently. We explain the pathophysiological reasoning behind therapeutic CRP apheresis and summarize the broad span of indications in which its application could be beneficial with a focus on ischemic stroke as well as the results of this therapeutic approach after myocardial infarction.

7.
Mol Biol Cell ; 31(2): 118-130, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31800378

ABSTRACT

The large isoform of the transmembrane protein angiomotin (AMOT130) controls cell proliferation and migration of many cell types. AMOT130 associates to the actin cytoskeleton and regulates tight-junction maintenance and signaling often via endosomal uptake of polarity proteins at tight junctions. AMOT130 is highly polarized and present only at the apical side of polarized cells. Here we show that bone morphogenetic protein (BMP) growth factor signaling and AMOT function are interlinked in apical-basal polarized cells. BMP6 controls AMOT internalization and endosomal trafficking in epithelial cells. AMOT130 interacts with the BMP receptor BMPR2 and facilitates SMAD activation and target gene expression. We further demonstrate that this effect of AMOT on BMP-SMAD signaling is dependent on endocytosis and specific to the apical side of polarized epithelial and endothelial cells. Knockdown of AMOT reduces SMAD signaling only from the apical side of polarized cells, while basolateral BMP-SMAD signaling is unaffected. This allows for the first time interference with BMP signaling in a polarized manner and identifies AMOT130 as a novel BMP signaling regulator.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Smad Proteins/metabolism , Angiomotins , Bone Morphogenetic Protein 6/metabolism , Cell Line , Cell Membrane/metabolism , Cell Polarity/physiology , Endosomes/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Phosphorylation , Signal Transduction/physiology , Tight Junctions/metabolism
8.
Atherosclerosis ; 291: 99-106, 2019 12.
Article in English | MEDLINE | ID: mdl-31706078

ABSTRACT

BACKGROUND AND AIMS: Gonadal hormones are mainly thought to account for sex and gender differences in the incidence, clinical manifestation and therapy of many cardiovascular diseases. However, intrinsic sex differences at the cellular level are mostly overlooked. Here, we assessed sex-specific metabolic and functional differences between male and female human umbilical vein endothelial cells (HUVECs). METHODS: Cellular metabolism was investigated by bioenergetic studies (Seahorse Analyser) and a metabolomic approach. Protein levels were determined by Western blots and proteome analysis. Vascular endothelial growth factor (VEGF)-stimulated cellular migration was assessed by gap closure. HUVECs from dizygotic twin pairs were used for most experiments. RESULTS: No sex differences were observed in untreated cells. However, sexual dimorphisms appeared after stressing the cells by serum starvation and treatment with VEGF. Under both conditions, female cells had higher intracellular ATP and metabolite levels. A significant decline in ATP levels was observed in male cells after serum starvation. After VEGF, the ratio of glycolysis/mitochondrial respiration was higher in female cells and migration was more pronounced. CONCLUSIONS: These results point to an increased stress tolerance of female cells. We therefore propose that female cells have an energetic advantage over male cells under conditions of diminished nutrient supply. A more favourable energy balance of female HUVECs after serum starvation and VEGF could potentially explain their stronger migratory capacity.


Subject(s)
Cell Movement , Energy Metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic , Twins, Dizygotic , Angiogenesis Inducing Agents/pharmacology , Cell Movement/drug effects , Culture Media, Serum-Free/metabolism , Energy Metabolism/drug effects , Female , Humans , Male , Neovascularization, Physiologic/drug effects , Phenotype , Protein Interaction Maps , Sex Characteristics , Sex Factors , Vascular Endothelial Growth Factor A/pharmacology
9.
Ther Apher Dial ; 23(5): 474-481, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30697961

ABSTRACT

C-reactive protein (CRP) is well known as a general marker of inflammation. It furthermore represents a reliable risk factor for cardiac events and mediates tissue damage in acute myocardial infarction (AMI). It has been demonstrated that selective CRP depletion by extracorporeal apheresis in a porcine AMI model had beneficial effects on the infarcted area and the cardiac output. We therefore developed a novel adsorber for CRP apheresis from human plasma (PentraSorb CRP). It is intended for use in the clinic as therapy for patients suffering from AMI or other acute inflammatory diseases with elevated CRP plasma levels. The PentraSorb resin specifically bound CRP from human blood plasma and almost no other proteins as determined via Sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE). The resin further efficiently and selectively depleted CRP from plasma with low as well as high CRP concentrations (10-100 mg/L) at different flow rates, ranging from 17 to 40 mL/min. The resin was regenerable for up to 200 times without losing its CRP binding capacity or affecting biocompatibility. The depletion of CRP from plasma was comparable between the utilized small-scale column (0.5 mL resin) and the PentraSorb CRP adsorber (20 mL resin volume). The established features can therefore be applied to the clinical setting. In summary, PentraSorb CRP provides a novel, specific, and efficient CRP-binding resin that could be used in apheresis therapy for patients suffering from inflammatory diseases such as AMI, stroke, acute pancreatitis, and Crohn's disease.


Subject(s)
Adsorption , Blood Component Removal/methods , C-Reactive Protein/metabolism , Electrophoresis, Polyacrylamide Gel , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...