Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Exp Eye Res ; 232: 109517, 2023 07.
Article in English | MEDLINE | ID: mdl-37211287

ABSTRACT

The cysteinyl leukotrienes (CysLTs) have important functions in the regulation of inflammation and cellular stress. Blocking the CysLT receptors (CysLTRs) with specific antagonists is beneficial against progression of retinopathies (e.g. diabetic retinopathy, wet AMD). However, the exact cellular localization of the CysLTRs and their endogenous ligands in the eye have not been elucidated in detail yet. It is also not known whether the expression patterns differ between humans and animal models. Therefore, the present study aimed to describe and compare the distribution of two important enzymes in CysLT biosynthesis, 5-lipoxygenase (5-LOX) and 5-lipoxygenase-activating protein (FLAP), and of CysLTR1 and CysLTR2 in healthy human, rat and mouse eyes. Human donor eyes (n = 10) and eyes from adult Sprague Dawley rats (n = 5) and CD1 mice (n = 8) of both sexes were collected. The eyes were fixed in 4% paraformaldehyde and cross-sections were investigated by immunofluorescence with specific antibodies against 5-LOX, FLAP (human tissue only), CysLTR1 and CysLTR2. Flat-mounts of the human choroid were prepared and processed similarly. Expression patterns were assessed and semiquantitatively evaluated using a confocal fluorescence microscope (LSM710, Zeiss). We observed so far unreported expression sites for CysLT system components in various ocular tissues. Overall, we detected expression of 5-LOX, CysLTR1 and CysLTR2 in the human, rat and mouse cornea, conjunctiva, iris, lens, ciliary body, retina and choroid. Importantly, expression profiles of CysLTR1 and CysLTR2 were highly similar between human and rodent eyes. FLAP was expressed in all human ocular tissues except the lens. Largely weak immunoreactivity of FLAP and 5-LOX was observed in a few, yet unidentified, cells of diverse ocular tissues, indicating low levels of CysLT biosynthesis in healthy eyes. CysLTR1 was predominantly detected in ocular epithelial cells, supporting the involvement of CysLTR1 in stress and immune responses. CysLTR2 was predominantly expressed in neuronal structures, suggesting neuromodulatory roles of CysLTR2 in the eye and revealing disparate functions of CysLTRs in ocular tissues. Taken together, we provide a comprehensive protein expression atlas of CysLT system components in the human and rodent eye. While the current study is purely descriptive and therefore does not allow significant functional conclusions yet, it represents an important basis for future studies in diseased ocular tissues in which distribution patterns or expression levels of the CysLT system might be altered. Furthermore, this is the first comprehensive study to elucidate expression patterns of CysLT system components in human and animal models that will help to identify and understand functions of the system as well as mechanisms of action of potential CysLTR ligands in the eye.


Subject(s)
Inflammation , Leukotrienes , Male , Adult , Female , Humans , Rats , Mice , Animals , Ligands , Rats, Sprague-Dawley , Leukotrienes/pharmacology
2.
Front Physiol ; 14: 1151495, 2023.
Article in English | MEDLINE | ID: mdl-37143930

ABSTRACT

Introduction: Pericytes (PCs) are specialized cells located abluminal of endothelial cells on capillaries, fulfilling numerous important functions. Their potential involvement in wound healing and scar formation is achieving increasing attention since years. Thus, many studies investigated the participation of PCs following brain and spinal cord (SC) injury, however, lacking in-depth analysis of lesioned optic nerve (ON) tissue. Further, due to the lack of a unique PC marker and uniform definition of PCs, contradicting results are published. Methods: In the present study the inducible PDGFRß-P2A-CreERT2-tdTomato lineage tracing reporter mouse was used to investigate the participation and trans-differentiation of endogenous PC-derived cells in an ON crush (ONC) injury model, analyzing five different post lesion time points up to 8 weeks post lesion. Results: PC-specific labeling of the reporter was evaluated and confirmed in the unlesioned ON of the reporter mouse. After ONC, we detected PC-derived tdTomato+ cells in the lesion, whereof the majority is not associated with vascular structures. The number of PC-derived tdTomato+ cells within the lesion increased over time, accounting for 60-90% of all PDGFRß+ cells in the lesion. The presence of PDGFRß+tdTomato- cells in the ON scar suggests the existence of fibrotic cell subpopulations of different origins. Discussion: Our results clearly demonstrate the presence of non-vascular associated tdTomato+ cells in the lesion core, indicating the participation of PC-derived cells in fibrotic scar formation following ONC. Thus, these PC-derived cells represent promising target cells for therapeutic treatment strategies to modulate fibrotic scar formation to improve axonal regeneration.

3.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901755

ABSTRACT

Psoriasis is an inflammatory skin disease characterized by increased neo-vascularization, keratinocyte hyperproliferation, a pro-inflammatory cytokine milieu and immune cell infiltration. Diacerein is an anti-inflammatory drug, modulating immune cell functions, including expression and production of cytokines, in different inflammatory conditions. Therefore, we hypothesized that topical diacerein has beneficial effects on the course of psoriasis. The current study aimed to evaluate the effect of topical diacerein on imiquimod (IMQ)-induced psoriasis in C57BL/6 mice. Topical diacerein was observed to be safe without any adverse side effects in healthy or psoriatic animals. Our results demonstrated that diacerein significantly alleviated the psoriasiform-like skin inflammation over a 7-day period. Furthermore, diacerein significantly diminished the psoriasis-associated splenomegaly, indicating a systemic effect of the drug. Remarkably, we observed significantly reduced infiltration of CD11c+ dendritic cells (DCs) into the skin and spleen of psoriatic mice with diacerein treatment. As CD11c+ DCs play a pivotal role in psoriasis pathology, we consider diacerein to be a promising novel therapeutic candidate for psoriasis.


Subject(s)
Dermatitis , Psoriasis , Animals , Mice , Spleen/metabolism , Mice, Inbred C57BL , Skin/metabolism , Psoriasis/pathology , Dermatitis/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Disease Models, Animal , Mice, Inbred BALB C
4.
Oxid Med Cell Longev ; 2022: 9151169, 2022.
Article in English | MEDLINE | ID: mdl-35035669

ABSTRACT

INTRODUCTION: Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial intestinal disorder but its precise etiology remains elusive. As the cells of the intestinal mucosa have high energy demands, mitochondria may play a role in IBD pathogenesis. The present study is aimed at evaluating the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes in IBD. Material and Methods. 286 intestinal biopsy samples from the terminal ileum, ascending colon, and rectum from 124 probands (34 CD, 33 UC, and 57 controls) were stained immunohistochemically for all five OXPHOS complexes and the voltage-dependent anion-selective channel 1 protein (VDAC1 or porin). Expression levels were compared in multivariate models including disease stage (CD and UC compared to controls) and age (pediatric/adult). RESULTS: Analysis of the terminal ileum of CD patients revealed a significant reduction of complex II compared to controls, and a trend to lower levels was evident for VDAC1 and the other OXPHOS complexes except complex III. A similar pattern was found in the rectum of UC patients: VDAC1, complex I, complex II, and complex IV were all significantly reduced, and complex III and V showed a trend to lower levels. Reductions were more prominent in older patients compared to pediatric patients and more marked in UC than CD. CONCLUSION: A reduced mitochondrial mass is present in UC and CD compared to controls. This is potentially a result of alterations of mitochondrial biogenesis or mitophagy. Reductions were more pronounced in older patients compared to pediatric patients, and more prominent in UC than CD. Complex I and II are more severely compromised than the other OXPHOS complexes. This has potential therapeutic implications, since treatments boosting biogenesis or influencing mitophagy could be beneficial for IBD treatment. Additionally, substances specifically stimulating complex I activity should be tested in IBD treatment.


Subject(s)
Inflammatory Bowel Diseases/genetics , Mitochondria/metabolism , Oxidative Phosphorylation , Adult , Child , Child, Preschool , Female , Humans , Inflammatory Bowel Diseases/pathology , Male
5.
Biochem Med (Zagreb) ; 32(1): 011001, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34955677

ABSTRACT

During a dual-center study on obese and normal weight children and adolescents, focusing on glucose metabolism, we observed a marked difference in glucose results (N = 16,840) between the two sites, Salzburg, Austria and Uppsala, Sweden (P < 0.001). After excluding differences in patient characteristics between the two populations as cause of this finding, we investigated other preanalytic influences. Finally, only the tubes used for blood collection at the two sites were left to evaluate. While the Vacuette FC-Mix tube (Greiner Bio-One, Kremsmünster, Austria) was used in Uppsala, in Salzburg blood collections were performed with a lithium heparin tube (LH-Monovette, Sarstedt, Germany). To prove our hypothesis, we collected two blood samples in either of these tubes from 51 children (Salzburg N = 27, Uppsala N = 24) and compared the measured glucose results. Indeed, we found the suspected bias and calculated a correction formula, which significantly diminished the differences of glucose results between the two sites (P = 0.023). Our finding is in line with those of other studies and although this issue should be widely known, we feel that it is widely neglected, especially when comparing glucose concentrations across Europe, using large databases without any information on preanalytic sample handling.


Subject(s)
Blood Specimen Collection , Glucose , Adolescent , Blood Glucose , Child , Europe , Heparin , Humans
6.
Curr Eye Res ; 47(4): 590-596, 2022 04.
Article in English | MEDLINE | ID: mdl-34758271

ABSTRACT

PURPOSE: Pericytes (PCs), located abluminal of endothelial cells on capillaries, are essential for vascular development and stability. They display a heterogeneous morphology depending on organ localization, differentiation state, and function. Consequently, PCs show a diverse gene expression profile, impeding the usage of a unique PC marker and therefore the distinct identification of PCs. Inducible reporter mouse models represent an important tool for investigating the fate of PCs under physiological and pathophysiological conditions. PC-specific expression efficiency of the fluorescence reporter tdTomato following tamoxifen induction was analyzed and compared in two inducible Cre recombinase-expressing mouse models under control of the NG2 and PDGFRb promotor. METHODS: The NG2-CreER™-tdTomato and the PDGFRb-P2A-CreERT2-tdTomato mice were treated with tamoxifen at three defining time points of retinal vascular development: post-natal days (P)5, P10/11/12, and P48/49/50/51. TdTomato reporter induction efficiency was determined by analyzing retinal whole mounts utilizing confocal microscopy, using the antibodies Anti-neural/glial antigen 2 (PCs), Anti-Collagen IV (basement membrane), and Anti-Glutamine Synthetase (Müller glial cells). RESULTS: Tamoxifen induction at the three different time points resulted in PC-specific expression of tdTomato in both reporter models. In the NG2-CreER™-tdTomato mouse, the induction efficiency ranged from 21.9 to 35.5%. In the PDGFRb-P2A-CreERT2-tdTomato mouse, an induction efficiency between 78.9 and 94.1% was achieved. TdTomato expression in the retina was restricted to PCs and vascular smooth muscle cells in the NG2-CreER™-tdTomato mouse, however, in the PDGFRb-P2A-CreERT2-tdTomato mouse, tdTomato was also expressed in Müller glial cells. CONCLUSION: Both reporter mouse models represent promising tools for fate-mapping studies of PCs. While the NG2-CreER™-tdTomato mouse reveals very specific labeling of PCs in the retina, its induction efficiency is lower compared to the PDGFRb-P2A-CreERT2-tdTomato mouse. Although the latter revealed a high percentage of tdTomato-positive PCs in the retina, additional labeling of Müller cells potentially hampers analysis of reporter-positive PCs.


Subject(s)
Pericytes , Receptor, Platelet-Derived Growth Factor beta , Animals , Endothelial Cells/metabolism , Integrases , Mice , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retina/metabolism , Tamoxifen/pharmacology
7.
Neurotherapeutics ; 18(4): 2737-2752, 2021 10.
Article in English | MEDLINE | ID: mdl-34859381

ABSTRACT

The regulatory (neuro)peptide galanin is widely distributed in the central and peripheral nervous systems, where it mediates its effects via three G protein-coupled receptors (GAL1-3R). Galanin has a vast diversity of biological functions, including modulation of feeding behavior. However, the clinical application of natural galanin is not practicable due to its rapid in vivo breakdown by peptidases and lack of receptor subtype specificity. Much effort has been put into the development of receptor-selective agonists and antagonists, and while receptor selectivity has been attained to some degree, most ligands show overlapping affinity. Therefore, we aimed to develop a novel ligand with specificity to a single galanin receptor subtype and increased stability. To achieve this, a lanthionine amino acid was enzymatically introduced into a galanin-related peptide. The residue's subsequent cyclization created a conformational constraint which increased the peptide's receptor specificity and proteolytic resistance. Further exchange of certain other amino acids resulted in a novel methyllanthionine-stabilized galanin receptor agonist, a G1pE-T3N-S6A-G12A-methyllanthionine[13-16]-galanin-(1-17) variant, termed M89b. M89b has exclusive specificity for GAL2R and a prolonged half-life in serum. Intranasal application of M89b to unfasted rats significantly reduced acute 24 h food intake inducing a drop in body weight. Combined administration of M89b and M871, a selective GAL2R antagonist, abolished the anorexigenic effect of M89b, indicating that the effect of M89b on food intake is indeed mediated by GAL2R. This is the first demonstration of in vivo activity of an intranasally administered lanthipeptide. Consequently, M89b is a promising candidate for clinical application as a galanin-related peptide-based therapeutic.


Subject(s)
Peptides , Receptor, Galanin, Type 2 , Animals , Eating , Rats , Receptor, Galanin, Type 2/agonists , Receptor, Galanin, Type 2/metabolism , Receptors, Galanin
8.
Sci Rep ; 11(1): 564, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436730

ABSTRACT

The regulatory (neuro)peptide galanin and its three receptors (GAL1-3R) are involved in immunity and inflammation. Galanin alleviated inflammatory bowel disease (IBD) in rats. However, studies on the galanin receptors involved are lacking. We aimed to determine galanin receptor expression in IBD patients and to evaluate if GAL2R and GAL3R contribute to murine colitis. Immunohistochemical analysis revealed that granulocytes in colon specimens of IBD patients (Crohn's disease and ulcerative colitis) expressed GAL2R and GAL3R but not GAL1R. After colitis induction with 2% dextran sulfate sodium (DSS) for 7 days, mice lacking GAL3R (GAL3R-KO) lost more body weight, exhibited more severe colonic inflammation and aggravated histologic damage, with increased infiltration of neutrophils compared to wild-type animals. Loss of GAL3R resulted in higher local and systemic inflammatory cytokine/chemokine levels. Remarkably, colitis-associated changes to the intestinal microbiota, as assessed by quantitative culture-independent techniques, were most pronounced in GAL3R-KO mice, characterized by elevated numbers of enterobacteria and bifidobacteria. In contrast, GAL2R deletion did not influence the course of colitis. In conclusion, granulocyte GAL2R and GAL3R expression is related to IBD activity in humans, and DSS-induced colitis in mice is strongly affected by GAL3R loss. Consequently, GAL3R poses a novel therapeutic target for IBD.


Subject(s)
Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Crohn Disease/genetics , Crohn Disease/microbiology , Gastrointestinal Microbiome , Gene Expression , Receptor, Galanin, Type 3/physiology , Animals , Colitis, Ulcerative/therapy , Crohn Disease/therapy , Humans , Inflammation , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Rats , Receptor, Galanin, Type 3/genetics , Receptor, Galanin, Type 3/metabolism
9.
Article in English | MEDLINE | ID: mdl-32625166

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) contributes essentially to the burden of obesity and can start in childhood. NAFLD can progress to cirrhosis and hepatocellular carcinoma. The early phase of NAFLD is crucial because during this time the disease is fully reversible. Pediatric NAFLD shows unique features of histology and pathophysiology compared to adults. Changes in serum iron parameters are common in adult NAFLD and have been termed dysmetabolic iron overload syndrome characterized by increased serum ferritin levels and normal transferrin saturation; however, the associations of serum ferritin, inflammation, and liver fat content have been incompletely investigated in children. As magnetic resonance imaging (MRI) is an excellent measure for the degree of liver steatosis, we applied this method herein to clarify the interaction between ferritin and fatty liver in male adolescents. For this study, one hundred fifty male pediatric patients with obesity and who are overweight were included. We studied a subgroup of male patients with (n = 44) and without (n = 18) NAFLD in whom we determined liver fat content, visceral adipose tissue, and subcutaneous adipose tissue extent with a 1.5T MRI (Philips NL). All patients underwent a standardized oral glucose tolerance test. We measured uric acid, triglycerides, HDL-, LDL-, total cholesterol, liver transaminases, high sensitive CRP (hsCRP), interleukin-6, HbA1c, and insulin. In univariate analysis, ferritin was associated with MRI liver fat, visceral adipose tissue content, hsCRP, AST, ALT, and GGT, while transferrin and soluble transferrin receptor were not associated with ferritin. Multivariate analysis identified hsCRP and liver fat content as independent predictors of serum ferritin in the pediatric male patients. Our data indicate that serum ferritin in male adolescents with obesity is mainly determined by liver fat content and inflammation but not by body iron status.


Subject(s)
Biomarkers/blood , Ferritins/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Pediatric Obesity/complications , Adolescent , Body Mass Index , Case-Control Studies , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Insulin Resistance , Liver Function Tests , Male , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/etiology , Prognosis
10.
Article in English | MEDLINE | ID: mdl-32265844

ABSTRACT

Expression of neuropeptides and their corresponding receptors has been demonstrated in different cancer types, where they can play a role in tumor cell growth, invasion, and migration. Human galanin (GAL) is a 30-amino-acid regulatory neuropeptide which acts through three G protein-coupled receptors, GAL1-R, GAL2-R, and GAL3-R that differ in their signal transduction pathways. GAL and galanin receptors (GALRs) are expressed by different tumors, and direct involvement of GAL in tumorigenesis has been shown. Despite its strong expression in the central nervous system (CNS), the role of GAL in CNS tumors has not been extensively studied. To date, GAL peptide expression, GAL receptor binding and mRNA expression have been reported in glioma, meningioma, and pituitary adenoma. However, data on the cellular distribution of GALRs are sparse. The aim of the present study was to examine the expression of GAL and GALRs in different brain tumors by immunohistochemistry. Anterior pituitary gland (n = 7), pituitary adenoma (n = 9) and glioma of different WHO grades I-IV (n = 55) were analyzed for the expression of GAL and the three GALRs with antibodies recently extensively validated for specificity. While high focal GAL immunoreactivity was detected in up to 40% of cells in the anterior pituitary gland samples, only one pituitary adenoma showed focal GAL expression, at a low level. In the anterior pituitary, GAL1-R and GAL3-R protein expression was observed in up to 15% of cells, whereas receptor expression was not detected in pituitary adenoma. In glioma, diffuse and focal GAL staining was noticed in the majority of cases. GAL1-R was observed in eight out of nine glioma subtypes. GAL2-R immunoreactivity was not detected in glioma and pituitary adenoma, while GAL3-R expression was significantly associated to high-grade glioma (WHO grade IV). Most interestingly, expression of GAL and GALRs was observed in tumor-infiltrating immune cells, including neutrophils and glioma-associated macrophages/microglia. The presence of GALRs on tumor-associated immune cells, especially macrophages, indicates that GAL signaling contributes to homeostasis of the tumor microenvironment. Thus, our data indicate that GAL signaling in tumor-supportive myeloid cells could be a novel therapeutic target.


Subject(s)
Adenoma/pathology , Biomarkers, Tumor/metabolism , Brain Neoplasms/pathology , Galanin/metabolism , Glioma/pathology , Pituitary Neoplasms/pathology , Receptors, Galanin/metabolism , Adenoma/genetics , Adenoma/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Child , Child, Preschool , Galanin/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Humans , Middle Aged , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Receptor, Galanin, Type 1/genetics , Receptor, Galanin, Type 1/metabolism , Receptor, Galanin, Type 2/genetics , Receptor, Galanin, Type 2/metabolism , Receptor, Galanin, Type 3/genetics , Receptor, Galanin, Type 3/metabolism , Receptors, Galanin/genetics , Young Adult
11.
Addict Biol ; 24(5): 886-897, 2019 09.
Article in English | MEDLINE | ID: mdl-29984872

ABSTRACT

Galanin is a neuropeptide which mediates its effects via three G-protein coupled receptors (GAL1-3 ). Administration of a GAL3 antagonist reduces alcohol self-administration in animal models while allelic variation in the GAL3 gene has been associated with an increased risk of alcohol use disorders in diverse human populations. Based on the association of GAL3 with alcoholism, we sought to characterize drug-seeking behavior in GAL3 -deficient mice for the first time. In the two-bottle free choice paradigm, GAL3 -KO mice consistently showed a significantly increased preference for ethanol over water when compared to wildtype littermates. Furthermore, male GAL3 -KO mice displayed significantly increased responding for ethanol under operant conditions. These differences in alcohol seeking behavior in GAL3 -KO mice did not result from altered ethanol metabolism. In contrast to ethanol, GAL3 -KO mice exhibited similar preference for saccharin and sucrose over water, and a similar preference for a high fat diet over a low fat diet as wildtype littermates. No differences in cognitive and locomotor behaviors were observed in GAL3 -KO mice to account for increased alcohol seeking behavior. Overall, these findings suggest genetic ablation of GAL3 in mice increases alcohol consumption.


Subject(s)
Alcohol Drinking/physiopathology , Drug-Seeking Behavior/drug effects , Receptor, Galanin, Type 3/deficiency , Animals , Apomorphine/pharmacology , Central Nervous System Depressants/metabolism , Central Nervous System Depressants/pharmacology , Central Nervous System Stimulants/pharmacology , Choice Behavior/drug effects , Conditioning, Operant , Dizocilpine Maleate/pharmacology , Dopamine Agonists/pharmacology , Emotions/drug effects , Ethanol/metabolism , Ethanol/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Fear/drug effects , Female , Hyperkinesis/physiopathology , Interpersonal Relations , Male , Maze Learning , Methamphetamine/pharmacology , Mice, Knockout , Motor Activity/drug effects , Phenotype , Reflex, Startle/drug effects , Self Administration , Sensory Gating/drug effects , Spatial Memory/drug effects
12.
Peptides ; 120: 170009, 2019 10.
Article in English | MEDLINE | ID: mdl-30196126

ABSTRACT

Antibodies are an integral biomedical tool, not only for research but also as therapeutic agents. However, progress can only be made with sensitive and specific antibodies. The regulatory (neuro)peptide galanin and its three endogenous receptors (GAL1-3-R) are widely distributed in the central and peripheral nervous systems, and in peripheral non-neuronal tissues. The galanin system has multiple biological functions, including feeding behavior, pain processing, nerve regeneration and inflammation, to name only a few. Galanin could serve as biomarker in these processes, and therefore its receptors are potential drug targets for various diseases. For that reason, it is of paramount interest to precisely measure galanin peptide levels in tissues and to determine the cellular and subcellular localization of galanin receptors. A plethora of antibodies and antibody-based tools, including radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) kits, are commercially available to detect galanin and its receptors. However, many of them lack rigorous validation which casts doubt on their specificity. A goal of the present study was to raise awareness of the importance of validation of antibodies and antibody-based tools, with a specific focus on the galanin system. To that end, we tested and report here about commercially available antibodies against galanin and galanin receptors that appear specific to us. Furthermore, we investigated the validity of commercially available galanin ELISA kits. As the tested ELISAs failed to meet the validation requirements, we developed and validated a specific sandwich ELISA which can be used to detect full-length galanin in human plasma.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Galanin/chemistry , Peptides/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Enzyme-Linked Immunosorbent Assay , Galanin/immunology , Humans , Peptides/immunology , Radioimmunoassay
13.
J Invest Dermatol ; 138(1): 199-207, 2018 01.
Article in English | MEDLINE | ID: mdl-28844939

ABSTRACT

The neuropeptide galanin is distributed in the central and peripheral nervous systems and in non-neuronal peripheral organs, including the skin. Galanin acts via three G protein-coupled receptors which, except galanin receptor 1, are expressed in various skin structures. The galanin system has been associated with inflammatory processes of the skin and of several other organs. Psoriasis is an inflammatory skin disease with increased neovascularization, keratinocyte hyperproliferation, a proinflammatory cytokine milieu, and immune cell infiltration. In this study, we showed that galanin receptor 3 is present in endothelial cells in human and murine dermal vessels and is co-expressed with nestin in neo-vessels of psoriatic patients. Moreover, in a murine psoriasis model, we showed that C57/BL6 mice lacking galanin receptor 3 display a milder course of psoriasis upon imiquimod treatment, leading to decreased disease severity, delayed neo-vascularization, reduced infiltration of neutrophils, and significantly lower levels of proinflammatory cytokines compared with wild-type mice. In contrast, galanin receptor 2-knockout animals did not differ significantly from wild type mice at both the macroscopic and molecular levels in their inflammatory response to imiquimod treatment. Our data indicate that galanin receptor 3, but not galanin receptor 2, plays an important role in psoriasis-like skin inflammation.


Subject(s)
Cytokines/metabolism , Neovascularization, Pathologic/pathology , Neutrophil Infiltration , Psoriasis/pathology , Receptor, Galanin, Type 3/metabolism , Adult , Animals , Disease Models, Animal , Female , Humans , Imiquimod/immunology , Keratinocytes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neovascularization, Pathologic/genetics , Nestin/metabolism , Neutrophils/immunology , Psoriasis/diagnosis , Psoriasis/genetics , Psoriasis/immunology , Receptor, Galanin, Type 2/genetics , Receptor, Galanin, Type 2/metabolism , Receptor, Galanin, Type 3/genetics , Severity of Illness Index , Skin/blood supply , Skin/drug effects , Skin/immunology , Skin/pathology
14.
Neuropeptides ; 64: 117-122, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27625299

ABSTRACT

Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15µg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed.


Subject(s)
Eating/drug effects , Energy Metabolism/drug effects , Galanin-Like Peptide/pharmacology , Homeostasis/drug effects , Animals , Body Temperature/drug effects , Body Temperature Regulation/physiology , Body Weight/drug effects , Body Weight/physiology , Energy Metabolism/physiology , Galanin/metabolism , Galanin-Like Peptide/administration & dosage , Injections, Intraventricular/methods , Male , Neuropeptides/metabolism , Rats, Wistar
15.
Exp Dermatol ; 25(9): 725-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27121264

ABSTRACT

Allergic contact dermatitis (ACD) is an inflammatory skin disease induced by allergen exposure and characterized by erythema, oedema and immune cell infiltration. The sensory peptide galanin (GAL) and its three receptors (GAL1-3 ) are involved in regulating inflammation. As GAL and its receptors are expressed in human and murine skin and GAL expression is increased in oxazolone-induced contact allergy, it could play a role in dermatitis. As GAL reduces neurogenic plasma extravasation in the mouse skin via GAL3 activation, the role of GAL3 in the oxazolone-induced dermatitis model was explored. Following topical challenge with oxazolone, GAL3 gene-deficient mice showed a trend towards reduced ear thickness. Plasma extravasation and neutrophil infiltration increased considerably upon oxazolone challenge in both GAL3 knockout animals and wild-type controls without any observable effect of the gene deletion. We conclude that a lack of GAL3 does not influence oxazolone-induced ACD.


Subject(s)
Dermatitis, Allergic Contact/metabolism , Disease Models, Animal , Receptor, Galanin, Type 3/metabolism , Animals , Dermatitis, Allergic Contact/etiology , Mice , Oxazolone
16.
J Mol Neurosci ; 59(2): 260-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26941032

ABSTRACT

Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation.


Subject(s)
Arthritis/metabolism , Autoimmune Diseases/metabolism , Receptor, Galanin, Type 3/genetics , Animals , Arthritis/genetics , Arthritis/pathology , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Capillary Permeability , Edema/metabolism , Endothelium, Vascular/metabolism , Hindlimb/pathology , Male , Mice , Neutrophils/metabolism , Receptor, Galanin, Type 3/deficiency
17.
Proc Natl Acad Sci U S A ; 111(19): 7138-43, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24782539

ABSTRACT

The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1-3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders.


Subject(s)
Anxiety Disorders/genetics , Anxiety Disorders/physiopathology , Depressive Disorder/genetics , Depressive Disorder/physiopathology , Receptor, Galanin, Type 3/genetics , Animals , Behavior, Animal/physiology , Female , Male , Mice , Mice, Knockout , Models, Animal , Phenotype , Receptor, Galanin, Type 3/metabolism , Serotonin/metabolism , Social Behavior , Sweat Glands/physiology
18.
PLoS One ; 7(2): e30874, 2012.
Article in English | MEDLINE | ID: mdl-22348027

ABSTRACT

BACKGROUND: Onset and development of the multifactorial disease age-related macular degeneration (AMD) are highly interrelated with mitochondrial functions such as energy production and free radical turnover. Mitochondrial dysfunction and overproduction of reactive oxygen species may contribute to destruction of the retinal pigment epithelium, retinal atrophy and choroidal neovascularization, leading to AMD. Consequently, polymorphisms of the mitochondrial genome (mtDNA) are postulated to be susceptibility factors for this disease. Previous studies from Australia and the United States detected associations of mitochondrial haplogroups with AMD. The aim of the present study was to test these associations in Middle European Caucasians. METHODOLOGY/PRINCIPAL FINDINGS: Mitochondrial haplogroups (combinations of mtDNA polymorphisms) and mitochondrial CR polymorphisms were analyzed in 200 patients with wet AMD (choroidal neovascularization, CNV), in 66 patients with dry AMD, and in 385 controls from Austria by means of multiplex primer extension analysis and sequencing, respectively. In patients with CNV, haplogroup H was found to be significantly less frequent compared to controls, and haplogroup J showed a trend toward a higher frequency compared to controls. Five CR polymorphisms were found to differ significantly in the two study populations compared to controls, and all, except one (T152C), are linked to those haplogroups. CONCLUSIONS/SIGNIFICANCE: It can be concluded that haplogroup J is a risk factor for AMD, whereas haplogroup H seems to be protective for AMD.


Subject(s)
Haplotypes , Macular Degeneration/genetics , Mitochondria/genetics , Polymorphism, Genetic , Austria , Case-Control Studies , Humans , White People
19.
PLoS One ; 7(12): e52367, 2012.
Article in English | MEDLINE | ID: mdl-23300652

ABSTRACT

BACKGROUND: Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids. METHODOLOGY/PRINCIPAL FINDINGS: Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress. CONCLUSIONS/SIGNIFICANCE: The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.


Subject(s)
HEK293 Cells/cytology , Haplotypes , Mitochondria/genetics , Cell Proliferation , DNA, Mitochondrial/genetics , Gene Dosage/genetics , HEK293 Cells/metabolism , Humans , Mitochondria/enzymology , Mitochondria/metabolism , Oxidative Phosphorylation , Oxidative Stress/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...