Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 18(11): 1187-1193, 2019 11.
Article in English | MEDLINE | ID: mdl-31501554

ABSTRACT

While spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin-orbitronics exploits the efficient spin-charge interconversion enabled by spin-orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO3 two-dimensional electron gas and map its gate dependence on the band structure. We show that the conversion process is amplified by enhanced Rashba-like splitting due to orbital mixing and in the vicinity of avoided band crossings with topologically non-trivial order. Our results indicate that oxide two-dimensional electron gases are strong candidates for spin-based information readout in new memory and transistor designs. Our results also emphasize the promise of topology as a new ingredient to expand the scope of complex oxides for spintronics.

2.
Nano Lett ; 19(1): 554-560, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30570259

ABSTRACT

Two-dimensional crystals of semi-metallic van der Waals materials hold much potential for the realization of novel phases, as exemplified by the recent discoveries of a polar metal in few-layer 1T'-WTe2 and of a quantum spin Hall state in monolayers of the same material. Understanding these phases is particularly challenging because little is known from experiments about the momentum space electronic structure of ultrathin crystals. Here, we report direct electronic structure measurements of exfoliated mono-, bi-, and few-layer 1T'-WTe2 by laser-based microfocus angle-resolved photoemission. This is achieved by encapsulating with monolayer graphene a flake of WTe2 comprising regions of different thickness. Our data support the recent identification of a quantum spin Hall state in monolayer 1T'-WTe2 and reveal strong signatures of the broken inversion symmetry in the bilayer. We finally discuss the sensitivity of encapsulated samples to contaminants following exposure to ambient atmosphere.

3.
Adv Mater ; 25(10): 1468-73, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23292988

ABSTRACT

Using X-ray absorption spectroscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for charge transfer at the interface between the Mott insulators Sm2 CuO4 and LaFeO3 is obtained. As a consequence of the charge transfer, the Sm2 CuO4 is doped with electrons and thus epitaxial Sm2 CuO4 /LaFeO3 heterostructures become metallic.

SELECTION OF CITATIONS
SEARCH DETAIL
...