Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674552

ABSTRACT

Plants are often exposed to multiple stresses, including heavy metals (HM) and drought, which limit the plant growth and productivity. Though biochar or plant growth-promoting rhizobacteria (PGPR) have been widely used for alleviating HM or drought stress in plants, the study of the effects of combined treatment with biochar and PGPR under simultaneous HM and drought stress is limited. This study investigated individual and combined effects of groundnut shell biochar (GS-BC) and PGPR Bacillus pseudomycoides strain ARN7 on Zea mays growth, physiology, and HM accumulation, along with their impact on soil enzymes under HM (Ni and Zn), drought, or HM+drought stress. It was observed that even under HM+drought stress, Z. mays growth, total chlorophyll, proteins, phenolics, and relative water contents were increased in response to combined GS-BC and ARN7 treatment. Furthermore, the combined treatment positively influenced plant superoxide dismutase, ascorbate peroxidase, and catalase activities, while reducing electrolyte leakage and phenolics, malondialdehyde, and proline under HM, drought, or HM+drought stress. Interestingly, the combined GS-BC and ARN7 treatment decreased HM accumulation and the bioaccumulation factor in Z. mays, highlighting that the combined treatment is suitable for improving HM phytostabilization. Additionally, GS-BC increased soil enzymatic activities and ARN7 colonization irrespective of HM and drought stress. As far as we know, this study is the first to illustrate that combined biochar and PGPR treatment could lessen the adverse effects of both HM and drought, suggesting that such treatment can be used in water-deficient HM-contaminated areas to improve plant growth and reduce HM accumulation in plants.

2.
J Environ Manage ; 289: 112553, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33857710

ABSTRACT

The co-occurrence of environmental stresses such as heavy metals (HM) and increased atmospheric temperature (IAT) pose serious implications on plant growth and productivity. In this work, we evaluated the role of plant growth-promoting bacteria (PGPB) and its effectiveness on Zea mays growth, stress tolerance and phytoremediation potential in multi-metal (MM) contaminated soils under IAT stress conditions. The PGPB strain TCU11 was isolated from metal contaminated soils and identified as Bacillus cereus. TCU11 was able to resist abiotic stresses such as IAT (45 °C), MM (Pb, Zn, Ni, Cu, and Cd), antibiotics and induced in vitro plant growth promotion (PGP) by producing siderophores (catechol and hydroxymate) and indole 3-acetic acid even in the presence of MM under IAT. Inoculation of TCU11 significantly increased the biomass, chlorophyll, carotenoids, and protein content of Z. mays compared to the respective control under MM, IAT, and MM + IAT stress. A decrease of malondialdehyde and over-accumulation of total phenolics, proline along with the increased activity of superoxide dismutase, catalase and ascorbic peroxidase were observed in TCU11 inoculated plants under stress conditions. These results suggested MM and/or IAT significantly reduced the maize growth, whereas TCU11 inoculation mitigated the combined stress effects on maize performance. Moreover, the inoculation of TCU11 under IAT stress increased the MM (Pb, Zn, Ni, Cu, and Cd) accumulation in plant tissues and also increased the translocation of HM from root to shoot except for Ni. The results of soil HM mobilization further indicates that IAT increased the HM mobilizing activity of TCU11, thus increasing the concentrations of bio-available HM in soil. These results suggested that TCU11 not only alleviates MM and IAT stresses but also enhances the biomass production and HM accumulation in plants. Therefore, TCU11 can be exploited as inoculums for improving the phytoremediation efficiency in MM polluted soils under IAT conditions.


Subject(s)
Metals, Heavy , Soil Pollutants , Bacillus cereus , Biodegradation, Environmental , Metals, Heavy/analysis , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Temperature
3.
Chemosphere ; 276: 130038, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33690033

ABSTRACT

Copper (Cu) is an essential element, however it's excess into the environment causes detrimental effect on plant and risks for public health. Four Cu and drought tolerant 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing rhizobacteria were isolated from the roots of Trifolium repens L. growing on Cu smelter contaminated soils, characterized and identified based on 16S rRNA gene sequencing. A consortium of high ACC deaminase (53.74 µM α-ketobutyrate mg-1 protein h-1) producing bacteria Pseudomonas sp. strain TR15a + siderophore producing Bacillus aerophilus strain TR15c significantly (p < 0.05) produced better results for multiple-metal tolerance including Cu (1750 mg kg-1), antibiotic resistance (ampicillin, kanamycin, chloramphenicol, penicillin, tetracycline, and streptomycin) and plant growth promoting attributes (phosphate solubilization: 315 mg L-1, indole-3-acetic acid (IAA) production: 8 mg L-1, ammonia and hydrogen cyanide production) as compared to individual isolates. Pot scale experiment (enriched with 100 mg Cu kg-1) showed inoculation of Helianthus annuus seeds with consortium of TR15a + TR15c had significantly (p < 0.05) improved seed germination by 32%, total dry biomass by 64%, root Cu by 47% and shoot Cu by 75% as compared to uninoculated control whereas 0.2-7 fold higher results were observed for above stated parameters as compared to four individual isolates studied. The result suggests consortium of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing B. aerophilus TR15c could play a vital role in enhanced Cu uptake and improvement of biomass and may provide a better alternative for decontamination of Cu contaminated natural ecosystem than individual isolates.


Subject(s)
Helianthus , Soil Pollutants , Bacillus , Carbon-Carbon Lyases , Copper/analysis , Ecosystem , Plant Roots/chemistry , Pseudomonas , RNA, Ribosomal, 16S/genetics , Siderophores , Soil Microbiology , Soil Pollutants/analysis
4.
Chemosphere ; 266: 128983, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33272662

ABSTRACT

Organic fertilizers became a better alternative to chemical fertilizers in modern agricultural practices however, contamination of copper (Cu) from organic fertilizer is still a major concern for the globe. Plant growth promoting (PGP) microorganisms showed their efficiency to combat with this problem and thus Cu tolerant PGP endophytes from roots of Odontarrhena obovata (Alyssum obovatum) growing on Cu smelter contaminated serpentine soil were explored in present study. Out of twenty-four isolates, Pseudomonas lurida strain EOO26 identified by 16s rRNA gene sequencing was selected to check its efficacy for Cu-remediation. The strain EOO26 showed multi-metal tolerance, drought resistance and exhibited PGP attributes such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophore and ammonia production. Significant production of indole-3-acetic acid and phosphate-solubilization under different Cu concentration (0-100 mg L-1) at varying pH (5.0-8.0) suggests potentiality of this strain to work effectively under wide range of abiotic stress conditions. Plant growth experiment (pH 6.8 ± 0.3) in copper spiked soil suggested a significant increase in length and dry weight of root and shoot of sunflower (Helianthus annuus) after inoculation with strain EOO26. Plants inoculated with strain EOO26 resulted in increase in Cu uptake by 8.6-fold for roots and 1.9-fold for leaves than uninoculated plants. The total plant uptake in inoculated Cu treatment was 2.6-fold higher than uninoculated one, which is much higher than the previously reported Cu accumulating plants. The excellent adaptation abilities and promising metal removal efficiency strongly indicate superiority of strain EOO26 for phytoremediation of Cu-contamination and may work effectively for Cu removal from contaminated soils.


Subject(s)
Helianthus , Soil Pollutants , Biodegradation, Environmental , Copper/analysis , Endophytes/genetics , Plant Roots/chemistry , Pseudomonas , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Soil Pollutants/analysis
5.
Chemosphere ; 244: 125521, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31812764

ABSTRACT

Climatic factors particularly increased atmospheric temperature (IAT) greatly alters plant microbe and heavy metal interactions and subsequently reduces plant growth and phytoremediation efficiency. The aim of the study was to assess the effects of inoculation of chromium reducing-thermotolerant plant growth promoting bacteria (CRT-PGPB) on plant growth, physiological responses and chromium (Cr) uptake by Sorghum bicolor under IAT condition. Three potential CRT-PGPB strains were isolated from Cr contaminated sites and identified as Bacillus cereus TCR17, Providencia rettgeri TCR21 and Myroides odoratimimus TCR22 through molecular characterization. These strains displayed the potential to reduce Cr6+ to Cr3+, produce siderophores, indole-3-acetic acid and solubilize phosphate. Inoculation of S. bicolor with CRT-PGPB increased plant growth, antioxidant status (superoxide dismutase, catalase and ascorbate peroxidase) and decreased proline and malondialdehyde contents in plants under Cr, IAT and Cr + IAT stress indicate that PGPB helped plants to reduce stress induced oxidative damage. Irrespective of IAT stress, inoculation of CRT-PGPB decreased the accumulation of Cr in plants compared with un-inoculated control suggest that CRT-PGPB might have the potential to improve phytostabilization process in Cr contaminated soils. Furthermore, gene expression studies confirmed that inoculation of TCR21 down-regulated the expression of proline synthesis gene (p5cs1) and up-regulated the expression of antioxidant related genes (sod, apx1 and cat) and stress tolerance genes (sHsp). Our results showed that CRT-PGPB exhibiting potential to tolerate Cr, temperature, produce plant beneficial metabolites and reduce Cr6+ to Cr3+, can be exploited as potential inoculants for improving plant growth and phytoremediation process in Cr contaminated soil under IAT condition.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Chromium/metabolism , Heat-Shock Response , Plant Development , Sorghum/microbiology , Thermotolerance , Antioxidants/metabolism , Chromium/toxicity , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Metals, Heavy/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Sorghum/growth & development , Sorghum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...