Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
PeerJ ; 12: e16963, 2024.
Article in English | MEDLINE | ID: mdl-38426140

ABSTRACT

Global biodiversity is declining at an ever-increasing rate. Yet effective policies to mitigate or reverse these declines require ecosystem condition data that are rarely available. Morphology-based bioassessment methods are difficult to scale, limited in scope, suffer prohibitive costs, require skilled taxonomists, and can be applied inconsistently between practitioners. Environmental DNA (eDNA) metabarcoding offers a powerful, reproducible and scalable solution that can survey across the tree-of-life with relatively low cost and minimal expertise for sample collection. However, there remains a need to condense the complex, multidimensional community information into simple, interpretable metrics of ecological health for environmental management purposes. We developed a riverine taxon-independent community index (TICI) that objectively assigns indicator values to amplicon sequence variants (ASVs), and significantly improves the statistical power and utility of eDNA-based bioassessments. The TICI model training step uses the Chessman iterative learning algorithm to assign health indicator scores to a large number of ASVs that are commonly encountered across a wide geographic range. New sites can then be evaluated for ecological health by averaging the indicator value of the ASVs present at the site. We trained a TICI model on an eDNA dataset from 53 well-studied riverine monitoring sites across New Zealand, each sampled with a high level of biological replication (n = 16). Eight short-amplicon metabarcoding assays were used to generate data from a broad taxonomic range, including bacteria, microeukaryotes, fungi, plants, and animals. Site-specific TICI scores were strongly correlated with historical stream condition scores from macroinvertebrate assessments (macroinvertebrate community index or MCI; R2 = 0.82), and TICI variation between sample replicates was minimal (CV = 0.013). Taken together, this demonstrates the potential for taxon-independent eDNA analysis to provide a reliable, robust and low-cost assessment of ecological health that is accessible to environmental managers, decision makers, and the wider community.


Subject(s)
DNA, Environmental , Ecosystem , Animals , DNA, Environmental/genetics , DNA Barcoding, Taxonomic/methods , Biodiversity , Rivers
3.
Polymers (Basel) ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835981

ABSTRACT

Due to chlorine's ability to kill bacteria and fungi through a chemical reaction, chlorine solutions are commonly used to clean and disinfect numerous public facilities, although these actions are also dependent to the equipment present in those facilities. Accordingly, the interest in studying its effect when in contact with different materials is obvious. This study was carried out through accelerated degradation tests and various analysis methods (optical microscope, scanning electron microscope, and tensile tests). The objective was to observe the wear presented by three polymeric materials, polyvinyl chloride (PVC), high-density polyethylene (HDPE), and polypropylene (PP), when exposed to chlorine's action in swimming pools and drinking water treatment plants. The resulting effect depends on the chlorine content and the type of contact between the chemical agent and the material. The aim was to select the material less likely to be affected by chlorine through tests and analyses, allowing a longer component life. The use of certain more resistant polymeric materials can drastically reduce maintenance, reducing fundamental factors such as costs, the downtime of municipal facilities, and also the risk to public health. It was concluded that PVC has the most stable behaviour overall when in contact with chlorine solutions.

4.
Plant Cell Environ ; 46(12): 3806-3821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635450

ABSTRACT

Forest disturbances increase the proportion of fast-growing tree species compared to slow-growing ones. To understand their relative capacity for carbon uptake and their vulnerability to climate change, and to represent those differences in Earth system models, it is necessary to characterise the physiological differences in their leaf-level control of water use efficiency and carbon assimilation. We used wood density as a proxy for the fast-slow growth spectrum and tested the assumption that trees with a low wood density (LWD) have a lower water-use efficiency than trees with a high wood density (HWD). We selected 5 LWD tree species and 5 HWD tree species growing in the same location in an Amazonian tropical forest and measured in situ steady-state gas exchange on top-of-canopy leaves with parallel sampling and measurement of leaf mass area and leaf nitrogen content. We found that LWD species invested more nitrogen in photosynthetic capacity than HWD species, had higher photosynthetic rates and higher stomatal conductance. However, contrary to expectations, we showed that the stomatal control of the balance between transpiration and carbon assimilation was similar in LWD and HWD species and that they had the same dark respiration rates.


Subject(s)
Water , Wood , Forests , Trees/physiology , Photosynthesis/physiology , Carbon , Nitrogen , Plant Leaves
5.
J Med Chem ; 66(17): 11732-11760, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37639383

ABSTRACT

A novel series of potent agonists of the bile acid receptor TGR5 bearing a dihydropyridone scaffold was developed from a high-throughput screen. Starting from a micromolar hit compound, we implemented an extensive structure-activity-relationship (SAR) study with the synthesis and biological evaluation of 83 analogues. The project culminated with the identification of the potent nanomolar TGR5 agonist 77A. We report the GLP-1 secretagogue effect of our lead compound ex vivo in mouse colonoids and in vivo. In addition, to identify specific features favorable for TGR5 activation, we generated and optimized a three-dimensional quantitative SAR model that contributed to our understanding of our activity profile and could guide further development of this dihydropyridone series.


Subject(s)
Quantitative Structure-Activity Relationship , Transcription Factors , Animals , Mice , Glucagon-Like Peptide 1 , Bile Acids and Salts
6.
Food Sci Technol Int ; : 10820132231186171, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408365

ABSTRACT

The use of microalgae as a source of food and pharmaceutical ingredients has garnered growing interest in recent years. Despite the rapid growth of the nutraceutical market, knowledge about the potential of bioactive molecules from microalgae remains insufficient. The present study aimed to investigate the biotechnological potential of the green microalga Desmodesmus armatus isolated from a semi-arid region of Brazil. The algal biomass was characterized in terms of gross biochemical composition, exopolysaccharide content, enzymatic inhibition capacity, and antioxidant, antibacterial, and hemolytic activities from solvents of different polarities (water, ethanol, acetone, and hexane). D armatus biomass had 40% of crude protein content, 25.94% of lipids, and 25.03% of carbohydrates. The prebiotic potential of exopolysaccharides from D armatus was demonstrated, which stimulated the growth of Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum bacteria strains. Moreover, the enzyme inhibition capacity for the proteases chymotrypsin (34.78%-45.8%) and pepsin (16.64%-27.27%), in addition to α-amylase (24.79%) and lipase (31.05%) was confirmed. The antioxidant potential varied between the different extracts, with 2,2-diphenyl-1-picrylhydrazyl sequestration values varying between 17.51% and 63.12%, and those of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method between 6.82% and 22.89%. In the antibacterial activity test, only the ethanolic extract showed inhibition against Listeria sp. (at minimum inhibitory concentration [MIC] = 256 µg mL-1). This fraction also presented the highest significant levels of hemolysis (31.88%-52.45%). In summary, the data presented in the study suggest the presence of biocompounds with biotechnological and nutraceutical potential in the D armatus biomass. Future studies may evaluate the inclusion of this biomass in foods in order to increase their biological value.

7.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37291703

ABSTRACT

This in vitro study aimed to evaluate the growth-inhibitory effects against periodontal disease-causing bacteria and cytotoxic effects against mouse fibroblast cells of the Stryphnodendron adstringens (barbatimão) hydroalcoholic extract. The contents of phenols and tannins in the extract were determined. The growth-inhibitory activity of the barbatimão was evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The viability of fibroblast cells was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay at 24 and 48 h post-treatment. The MIC values of the extract against Prevotella intermedia, Porphyromonas gingivalis, and Fusobacterium nucleatum were 0.05, 0.125, and 2 mg mL-1, respectively, while the MBC values were 4, 2, and 2 mg mL-1, respectively. The viability rate of barbatimão (0.25 mg mL-1)-treated L929 cells was higher than that of chlorhexidine (0.12%)-treated L929 cells at 48 h post-treatment. The contents of total phenolics and total tannins in the extract were 837.39 ± 0.10 and 785.82 ± 0.14 mg of tannic acid equivalent per gram of the extract, respectively. These findings indicate that the barbatimão hydroalcoholic extract, which exerted potent growth-inhibitory effects against the test microbial species and low cytotoxic effects on fibroblasts, has potential applications in the development of novel mouthwash products.


Subject(s)
Fabaceae , Plant Extracts , Mice , Animals , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Tannins/pharmacology , Porphyromonas gingivalis , Microbial Sensitivity Tests , Fibroblasts
8.
Expert Opin Drug Discov ; 18(7): 737-752, 2023 07.
Article in English | MEDLINE | ID: mdl-37246811

ABSTRACT

INTRODUCTION: Protein-protein interactions (PPIs) have been often considered undruggable targets although they are attractive for the discovery of new therapeutics. The spread of artificial intelligence and machine learning complemented with experimental methods is likely to change the perspectives of protein-protein modulator research. Noteworthy, some novel low molecular weight (LMW) and short peptide modulators of PPIs are already in clinical trials for the treatment of relevant diseases. AREAS COVERED: This review focuses on the main molecular properties of protein-protein interfaces and on key concepts pertaining to the modulation of PPIs. The authors survey recently reported state-of-the-art methods dealing with the rational design of PPI modulators and highlight the role of several computer-based approaches. EXPERT OPINION: Interfering specifically with large protein interfaces is still an open challenge. The initial concerns about the unfavorable physicochemical properties of many of these modulators are nowadays less acute with several molecules lying beyond the rule of 5, orally available and successful in clinical trials. As the cost of biologics interfering with PPIs is very high, it would seem reasonable to put more effort, both in academia and the private sectors, on actively developing novel low molecular weight compounds and short peptides to perform this task.


Subject(s)
Artificial Intelligence , Peptides , Humans , Molecular Weight , Protein Binding , Peptides/chemistry , Drug Discovery , Proteins/metabolism
9.
Hum Genomics ; 17(1): 24, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941667

ABSTRACT

BACKGROUND: Moyamoya angiopathy (MMA) is a rare cerebrovascular condition leading to stroke. Mutations in 15 genes have been identified in Mendelian forms of MMA, but they explain only a very small proportion of cases. Our aim was to investigate the genetic basis of MMA in consanguineous patients having unaffected parents in order to identify genes involved in autosomal recessive MMA. METHODS: Exome sequencing (ES) was performed in 6 consecutive consanguineous probands having MMA of unknown etiology. Functional consequences of variants were assessed using western blot and protein 3D structure analyses. RESULTS: Causative homozygous variants of NOS3, the gene encoding the endothelial nitric oxide synthase (eNOS), and GUCY1A3, the gene encoding the alpha1 subunit of the soluble guanylate cyclase (sGC) which is the major nitric oxide (NO) receptor in the vascular wall, were identified in 3 of the 6 probands. One NOS3 variant (c.1502 + 1G > C) involves a splice donor site causing a premature termination codon and leads to a total lack of eNOS in endothelial progenitor cells of the affected proband. The other NOS3 variant (c.1942 T > C) is a missense variant located into the flavodoxine reductase domain; it is predicted to be destabilizing and shown to be associated with a reduction of eNOS expression. The GUCY1A3 missense variant (c.1778G > A), located in the catalytic domain of the sGC, is predicted to disrupt the tridimensional structure of this domain and to lead to a loss of function of the enzyme. Both NOS3 mutated probands suffered from an infant-onset and severe MMA associated with posterior cerebral artery steno-occlusive lesions. The GUCY1A3 mutated proband presented an adult-onset MMA associated with an early-onset arterial hypertension and a stenosis of the superior mesenteric artery. None of the 3 probands had achalasia. CONCLUSIONS: We show for the first time that biallelic loss of function variants in NOS3 is responsible for MMA and that mutations in NOS3 and GUCY1A3 are causing fifty per cent of MMA in consanguineous patients. These data pinpoint the essential role of the NO pathway in MMA pathophysiology.


Subject(s)
Moyamoya Disease , Nitric Oxide Synthase Type III , Nitric Oxide , Soluble Guanylyl Cyclase , Adult , Humans , Moyamoya Disease/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Signal Transduction/genetics , Soluble Guanylyl Cyclase/genetics
10.
Materials (Basel) ; 16(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36984394

ABSTRACT

Many municipal facilities, such as pools and drinking water treatment facilities, are subject to ongoing maintenance due to the corrosion of their metallic materials caused by chlorine, leading to high costs and a possible risk to public health. A proper study of the employed product's effect could lead to the use of better materials, which significantly increase the lifetime of metallic equipment more attacked by corrosion, through studies evaluating their cost-effectiveness. This paper was carried out with the objective of studying the degradation of some metallic materials (AISI 316L, AISI 321 and Duplex 14462) used in the referred facilities in order to select the one that possessed a better behavior. It was observed that the introduction of some more adequate materials can drastically reduce maintenance operations, with Duplex 14462 showing the best results, ideal for greater chlorine concentrations, followed by AISI 321, which may be employed for components in less contact with chlorine, since it is more easily affordable.

11.
Materials (Basel) ; 16(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36769978

ABSTRACT

The use of disinfection and cleaning chemicals in several municipal facilities, such as swimming pools and drinking water treatment plants, causes the degradation of various types of wood, which leads to failures in equipment and the corresponding need for maintenance. This degradation creates added costs for municipalities, as well as the closure of certain facilities due to curative or preventive maintenance and, in many cases, public health issues, due to the water being contaminated with deteriorating products. Through a thorough study of the degradation effect on the products, more resistant materials can be found which are able to withstand these adversities and increase the lifespan of wood in regular contact with chemical agents. This is achievable by the determination of the cost-effectiveness of the substitute material to replace these components with alternative ones, with properties that better resist the deterioration effects promoted by aggressive environments. No studies have been found so far strictly focused on this matter. The objective of this study is to evaluate the degradation presented by two types of wood, beech and oak, which are exposed to the action of chlorine in municipal facilities. This degradation varies according to the chlorine content and the materials' time of contact with the chemical agent, allowing the selection of new materials which will provide an extended lifetime of the components, reducing maintenance drastically, as well as costs for the facilities and the risk to public health. The performed experimental tests have shown that the oak wood has the best results regarding chlorine degradation resistance.

12.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 581-588, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35934921

ABSTRACT

This study aimed to assess the effects of different spray-dried plasma (SDP) feeding programmes to pigs on performance, intestinal histomorphology and faecal bacterial shedding after an Escherichia coli K88 challenge. A total of 96 piglets (5.77 ± 0.01 kg) were weaned at 21 days of age (Day 0) and challenged with 3 ml of 1 × 1010 CFU of E. coli K88 in total 3.0 × 1010 CFU/animal on Days 0, 2 and 4. Pigs were fed nursery diets containing 0.0%, 3.0%, 6.0% or 9.0% SDP from weaning to 35 days of age; 0.0%, 1.5%, 3.0% or 4.5% SDP from 36 to 49 days; and the same control diet (without SDP), for the last 10 days of the experiment (50-59 days of age). Performance was measured from 35 to 59 days of age and faecal bacterial shedding and intestinal histomorphometry were evaluated at Days 28 and 49 of age respectively. From 21 to 35 days of age, there was a linear effect for body weight (BW) and average daily gain (ADG), a trend of linear effect for average daily feed intake (ADFI) and a quadratic effect for feed:gain ratio (FG). From 21 to 49 days, the 9.0:4.5% and 6.0:3.0% SDP feeding programmes improved BW, ADG and FG when compared to the other treatments. At 59 days of age, BW and ADG were increased by the two highest SDP feeding programmes. The 9.0:4.5% SDP feeding programme increased ADFI from 21 to 59 days of age, with 6.0:3.0% being intermediate and the other two treatments being lowest. The CFU counts of E. coli/g of faeces decreased linearly with increasing addition of SDP. These results indicate that an extended inclusion of increased SDP levels in post-weaning diets can improve growth potential and decrease bacterial shedding induced by E. coli K88.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Animals , Swine , Bacterial Shedding , Diet , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Weaning , Feces/microbiology , Animal Feed/analysis , Swine Diseases/microbiology
13.
Front Immunol ; 14: 1278630, 2023.
Article in English | MEDLINE | ID: mdl-38250065

ABSTRACT

The overexpression of the immunoinhibitory receptor programmed death-1 (PD1) on T-cells is involved in immune evasion in cancer. The use of anti-PD-1/PDL-1 strategy has deeply changed the therapies of cancers and patient survival. However, their efficacy diverges greatly along with tumor type and patient populations. Thereby, novel treatments are needed to interfere with the anti-tumoral immune responses and propose an adjunct therapy. In the current study, we found that the antifungal drug Sulconazole (SCZ) inhibits PD-1 expression on activated PBMCs and T cells at the RNA and protein levels. SCZ repressed NF-κB and calcium signaling, both, involved in the induction of PD-1. Further analysis revealed cancer cells treatment with SCZ inhibited their proliferation, and migration and ability to mediate tumor growth in zebrafish embryos. SCZ found also to inhibit calcium mobilization in cancer cells. These results suggest the SCZ therapeutic potential used alone or as adjunct strategy to prevent T-cell exhaustion and promotes cancer cell malignant phenotype repression in order to improve tumor eradication.


Subject(s)
Imidazoles , NF-kappa B , Neoplasms , Humans , Animals , Calcium , Programmed Cell Death 1 Receptor , Zebrafish , Calcium Signaling , Neoplasms/drug therapy
14.
Pharmaceutics ; 14(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36559092

ABSTRACT

(1) Background: With the massive demand for the use and commercialization of medicinal cannabidiol (CBD) products, new randomized clinical trials (RCTs) are being published worldwide, with a constant need for safety and efficacy evaluation. (2) Methods: We performed an update on a systematic review published in 2020 that focused on analyzing the serious adverse effects (SAEs) of CBD in RCTs and its possible association with drug interactions. We also updated the report of the most prevalent CBD adverse effects (AEs). We systematically searched EMBASE, MEDLINE/PubMed, and Web of Science without language restriction for RCTs that reported adverse effects after repeated oral CBD administration for at least one week in healthy volunteers or clinical samples published from January 2019 to May 2022. The included studies were assessed for methodological quality by the Quality Assessment of Controlled Intervention Studies tool. The present review is registered on PROSPERO, number CRD42022334399. (3) Results: Twelve studies involving 745 randomized subjects analyzed were included (range 1.1-56.8 y). A total of 454 participants used CBD in the trials. The most common AEs of CBD were mild or moderate and included gastrointestinal symptoms (59.5%), somnolence (16.7%), loss of appetite (16.5%), and hypertransaminasemia (ALT/AST) (12.8%). Serious adverse effects include mainly hypertransaminasemia with serum levels elevations greater than three times the upper limit of the normal (6.4%), seizures (1.3%), and rash (1.1%). All SAEs reported in the studies were observed on CBD as an add-on therapy to anticonvulsant medications, including clobazam and valproate. (4) Conclusion: Recent RCTs involving oral CBD administration for at least a week suggest that CBD has a good safety and tolerability profile, confirming previous data. However, it can potentially interact with other drugs and its use should be monitored, especially at the beginning of treatment.

15.
Int. braz. j. urol ; 48(6): 937-943, Nov.-Dec. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1405167

ABSTRACT

ABSTRACT Introduction: Upper airway obstruction (UAO) is a common condition in all pediatric population, with a 27% prevalence. Primary monosymptomatic nocturnal enuresis (PMNE) is a condition related to UAO in 8% to 47% of these children. The specific pathophysiological mechanism of this bond is not well understood. Some authors suggest a connection between brain natrituretic peptide (BNP) and anti-diuretic hormone (ADH) during sleep. The aim of this study was to evaluate hormone profile (ADH and BNP) and improvement in dry nights in a sample of children before and after surgical treatment of the UAO. Methods: This is a longitudinal prospective interventionist study in children, 5 to 14 years of age, with UAO and PMNE recruited in a specialty outpatient clinic. Children presenting UAO and PMNE were evaluated with a 30-day dry night diary and blood samples were collected to evaluate ADH and BNP before and after upper airway surgery. Data were analyzed prior to surgery and 90-120 days after surgery. Results: Twenty-one children with a mean age of 9.7 years were included. Mean BNP before surgery was 116.5 ± 126.5 pg/mL and 156.2 ± 112.3 pg/mL after surgery (p<0.01). Mean ADH was 5.8 ± 3.2 pg/mL and 14.6 ± 35.4 before and after surgery, respectively (p=0.26). The percentage of dry nights went from 32.3 ± 24.7 before surgery to 75.4 ± 33.4 after surgery (p<0.01). Conclusion: Surgery for airway obstruction contributed to an increase in BNP without increasing ADH. A total of 85.8% of the children presented partial or complete improvement of their enuresis.

16.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430841

ABSTRACT

The modulation of protein-protein interactions (PPIs) by small chemical compounds is challenging. PPIs play a critical role in most cellular processes and are involved in numerous disease pathways. As such, novel strategies that assist the design of PPI inhibitors are of major importance. We previously reported that the knowledge-based DLIGAND2 scoring tool was the best-rescoring function for improving receptor-based virtual screening (VS) performed with the Surflex docking engine applied to several PPI targets with experimentally known active and inactive compounds. Here, we extend our investigation by assessing the vs. potential of other types of scoring functions with an emphasis on docking-pose derived solvent accessible surface area (SASA) descriptors, with or without the use of machine learning (ML) classifiers. First, we explored rescoring strategies of Surflex-generated docking poses with five GOLD scoring functions (GoldScore, ChemScore, ASP, ChemPLP, ChemScore with Receptor Depth Scaling) and with consensus scoring. The top-ranked poses were post-processed to derive a set of protein and ligand SASA descriptors in the bound and unbound states, which were combined to derive descriptors of the docked protein-ligand complexes. Further, eight ML models (tree, bagged forest, random forest, Bayesian, support vector machine, logistic regression, neural network, and neural network with bagging) were trained using the derivatized SASA descriptors and validated on test sets. The results show that many SASA descriptors are better than Surflex and GOLD scoring functions in terms of overall performance and early recovery success on the used dataset. The ML models were superior to all scoring functions and rescoring approaches for most targets yielding up to a seven-fold increase in enrichment factors at 1% of the screened collections. In particular, the neural networks and random forest-based ML emerged as the best techniques for this PPI dataset, making them robust and attractive vs. tools for hit-finding efforts. The presented results suggest that exploring further docking-pose derived SASA descriptors could be valuable for structure-based virtual screening projects, and in the present case, to assist the rational design of small-molecule PPI inhibitors.


Subject(s)
Algorithms , Proteins , Ligands , Bayes Theorem , Proteins/chemistry , Support Vector Machine
17.
Int Braz J Urol ; 48(6): 937-943, 2022.
Article in English | MEDLINE | ID: mdl-36173405

ABSTRACT

INTRODUCTION: Upper airway obstruction (UAO) is a common condition in all pediatric population, with a 27% prevalence. Primary monosymptomatic nocturnal enuresis (PMNE) is a condition related to UAO in 8% to 47% of these children. The specific pathophysiological mechanism of this bond is not well understood. Some authors suggest a connection between brain natrituretic peptide (BNP) and anti-diuretic hormone (ADH) during sleep. The aim of this study was to evaluate hormone profile (ADH and BNP) and improvement in dry nights in a sample of children before and after surgical treatment of the UAO. METHODS: This is a longitudinal prospective interventionist study in children, 5 to 14 years of age, with UAO and PMNE recruited in a specialty outpatient clinic. Children presenting UAO and PMNE were evaluated with a 30-day dry night diary and blood samples were collected to evaluate ADH and BNP before and after upper airway surgery. Data were analyzed prior to surgery and 90-120 days after surgery. RESULTS: Twenty-one children with a mean age of 9.7 years were included. Mean BNP before surgery was 116.5 ± 126.5 pg/mL and 156.2 ± 112.3 pg/mL after surgery (p<0.01). Mean ADH was 5.8 ± 3.2 pg/mL and 14.6 ± 35.4 before and after surgery, respectively (p=0.26). The percentage of dry nights went from 32.3 ± 24.7 before surgery to 75.4 ± 33.4 after surgery (p˂0.01). CONCLUSION: Surgery for airway obstruction contributed to an increase in BNP without increasing ADH. A total of 85.8% of the children presented partial or complete improvement of their enuresis.


Subject(s)
Airway Obstruction , Enuresis , Nocturnal Enuresis , Urinary Incontinence , Airway Obstruction/surgery , Child , Diuretics , Hormones , Humans , Nocturnal Enuresis/epidemiology , Peptides , Prospective Studies , Vasopressins
18.
Appl Microbiol Biotechnol ; 106(18): 6263-6276, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35972515

ABSTRACT

Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.


Subject(s)
Dinoflagellida , Antioxidants , Carotenoids , Chlorophyll , Docosahexaenoic Acids
19.
Geophys Res Lett ; 49(3): e2021GL096191, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35845251

ABSTRACT

Mixed-phase clouds play an important role in determining Arctic warming, but are parametrized in models and difficult to constrain with observations. We use two satellite-derived cloud phase metrics to investigate the vertical structure of Arctic clouds in two global climate models that use the Community Atmosphere Model version 6 (CAM6) atmospheric component. We report a model error limiting ice nucleation, produce a set of Arctic-constrained model runs by adjusting model microphysical variables to match the cloud phase metrics, and evaluate cloud feedbacks for all simulations. Models in this small ensemble uniformly overestimate total cloud fraction in the summer, but have variable representation of cloud fraction and phase in the winter and spring. By relating modeled cloud phase metrics and changes in low-level liquid cloud amount under warming to longwave cloud feedback, we show that mixed-phase processes mediate the Arctic climate by modifying how wintertime and springtime clouds respond to warming.

20.
Proc Natl Acad Sci U S A ; 119(24): e2120083119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666870

ABSTRACT

Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of ß-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse ß-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non­GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.


Subject(s)
Alternative Splicing , Diabetes Mellitus , CD59 Antigens/genetics , CD59 Antigens/metabolism , Diabetes Mellitus/genetics , Humans , Insulin Secretion , Protein Isoforms/genetics , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...