Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Care ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38594036

ABSTRACT

BACKGROUND: The use of prone position (PP) has been widespread during the COVID-19 pandemic. Whereas it has demonstrated benefits, including improved oxygenation and lung aeration, the factors influencing the response in terms of gas exchange to PP remain unclear. In particular, the association between baseline quantitative computed tomography (CT) scan results and gas exchange response to PP in invasively ventilated subjects with COVID-19 ARDS is unknown. The present study aimed to compare baseline quantitative CT results between subjects responding to PP in terms of oxygenation or CO2 clearance and those who did not. METHODS: This was a single-center, retrospective observational study including critically ill, invasively ventilated subjects with COVID-19-related ARDS admitted to the ICUs of Niguarda Hospital between March 2020-November 2021. Blood gas samples were collected before and after PP. Subjects in whom the PaO2 /FIO2 increase was ≥ 20 mm Hg after PP were defined as oxygen responders. CO2 responders were defined when the ventilatory ratio (VR) decreased during PP. Automated quantitative CT analyses were performed to obtain tissue mass and density of the lungs. RESULTS: One hundred twenty-five subjects were enrolled, of which 116 (93%) were O2 responders and 51 (41%) CO2 responders. No difference in quantitative CT characteristics and oxygen were observed between responders and non-responders (tissue mass 1,532 ± 396 g vs 1,654 ± 304 g, P = .28; density -544 ± 109 HU vs -562 ± 58 HU P = .42). Similar findings were observed when dividing the population according to CO2 response (tissue mass 1,551 ± 412 g vs 1,534 ± 377 g, P = .89; density -545 ± 123 HU vs -546 ± 94 HU, P = .99). CONCLUSIONS: Most subjects with COVID-19-related ARDS improved their oxygenation at the first pronation cycle. The study suggests that baseline quantitative CT scan data were not associated with the response to PP in oxygenation or CO2 in mechanically ventilated subjects with COVID-19-related ARDS.

4.
Blood Purif ; 52(9-10): 802-811, 2023.
Article in English | MEDLINE | ID: mdl-37673054

ABSTRACT

INTRODUCTION: Metformin intoxication causes lactic acidosis by inhibiting Krebs' cycle and oxidative phosphorylation. Continuous renal replacement therapy (CRRT) is recommended for metformin removal in critically ill patients. According to current guidelines, regional citrate anticoagulation (RCA) is the first-line strategy. However, since metformin also inhibits citrate metabolism, a risk of citrate accumulation could be hypothesized. In the present study, we monitored the potential citrate accumulation in metformin-associated lactic acidosis (MALA) patients treated with CRRT and RCA using the physical-chemical approach to acid-base interpretation. METHODS: We collected a case series of 3 patients with MALA. Patients were treated with continuous venovenous hemofiltration (CVVH), and RCA was performed with diluted citrate solution. Citrate accumulation was monitored through two methods: the ratio between total and ionized plasma calcium concentrations (T/I calcium ratio) above 2.5 and the strong ion gap (SIG) to identify an increased concentration of unmeasured anions. Lastly, a mathematical model was developed to estimate the expected citrate accumulation during CVVH and RCA. RESULTS: All 3 patients showed a resolution of MALA after the treatment with CVVH. The T/I calcium ratio was consistently below 2.5, and SIG decreased, reaching values lower than 6 mEq/L after 48 h of CVVH treatment. According to the mathematical model, the estimated SIG without citrate metabolism should have been around 21 mEq/L due to citrate accumulation. CONCLUSIONS: In our clinical management, no signs of citrate accumulation were recorded in MALA patients during treatment with CVVH and RCA. Our data support the safe use of diluted citrate to perform RCA during metformin intoxication.


Subject(s)
Acidosis, Lactic , Continuous Renal Replacement Therapy , Hemofiltration , Humans , Citric Acid/therapeutic use , Calcium/pharmacology , Calcium Citrate , Anticoagulants/therapeutic use , Acidosis, Lactic/chemically induced , Hemofiltration/adverse effects , Citrates/adverse effects , Renal Replacement Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...