Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Clin Chem ; 69(8): 777-784, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37562009

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for laboratory analysis in patients with diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments in the full version of the guideline). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the patients measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring; genetic testing; and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Blood Glucose , Diabetes Mellitus , Humans , United States , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin
2.
J Am Chem Soc ; 145(32): 17515-17526, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37534994

ABSTRACT

Molecular oxygen is the quintessential oxidant for organic chemical synthesis, but many challenges continue to limit its utility and breadth of applications. Extensive historical research has focused on overcoming kinetic challenges presented by the ground-state triplet electronic structure of O2 and the various reactivity and selectivity challenges associated with reactive oxygen species derived from O2 reduction. This Perspective will analyze thermodynamic principles underlying catalytic aerobic oxidation reactions, borrowing concepts from the study of the oxygen reduction reaction (ORR) in fuel cells. This analysis is especially important for "oxidase"-type liquid-phase catalytic aerobic oxidation reactions, which proceed by a mechanism that couples two sequential redox half-reactions: (1) substrate oxidation and (2) oxygen reduction, typically affording H2O2 or H2O. The catalysts for these reactions feature redox potentials that lie between the potentials associated with the substrate oxidation and oxygen reduction reactions, and changes in the catalyst potential lead to variations in effective overpotentials for the two half reactions. Catalysts that operate at low ORR overpotential retain a more thermodynamic driving force for the substrate oxidation step, enabling O2 to be used in more challenging oxidations. While catalysts that operate at high ORR overpotential have less driving force available for substrate oxidation, they often exhibit different or improved chemoselectivity relative to the high-potential catalysts. The concepts are elaborated in a series of case studies to highlight their implications for chemical synthesis. Examples include comparisons of (a) NOx/oxoammonium and Cu/nitroxyl catalysts, (b) high-potential quinones and amine oxidase biomimetic quinones, and (c) Pd aerobic oxidation catalysts with or without NOx cocatalysts. In addition, we show how the reductive activation of O2 provides a means to access potentials not accessible with conventional oxidase-type mechanisms. Overall, this analysis highlights the central role of catalyst overpotential in guiding the development of aerobic oxidation reactions.

3.
Diabetes Care ; 46(10): 1740-1746, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37471272

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for laboratory analysis in patients with diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments in the full version of the guideline). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the patients measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring; genetic testing; and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Blood Glucose , Diabetes Mellitus , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin
4.
Diabetes Care ; 46(10): e151-e199, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37471273

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH: An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin , Diabetes Mellitus, Type 1/diagnosis
5.
Clin Chem ; 69(8): 808-868, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37473453

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH: An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin
6.
Organometallics ; 41(22): 3161-3166, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36776986

ABSTRACT

Palladium(II) catalysts promote oxidative dehydrogenation and dehydrogenative coupling of many organic molecules. Oxidations of alcohols to aldehydes or ketones are prominent examples. Hydroquinone (H2Q) oxidation to benzoquinone (BQ) is conceptually related to alcohol oxidation, but it is significantly more challenging thermodynamically. The BQ/H2Q redox potential is sufficiently high that BQ is often used as an oxidant in Pd-catalyzed oxidation reactions. A recent report (J. Am Chem. Soc. 2020, 142, 19678-19688) showed that certain ancillary ligands can raise the PdII/0 redox potential sufficiently to reverse this reactivity, enabling (L)PdII(OAc)2 to oxidize hydroquinone to benzoquinone. Here, we investigate the oxidation of tert-butylhydroquinone ( t BuH2Q) and 4-fluorobenzyl alcohol (4FBnOH), mediated by (bc)Pd(OAc)2 (bc = bathocuproine). Although alcohol oxidation is thermodynamically favored over H2Q oxidation by more than 400 mV, the oxidation of t BuH2Q proceeds several orders of magnitude faster than 4FBnOH oxidation. Kinetic and mechanistic studies reveal that these reactions feature different rate-limiting steps. Alcohol oxidation proceeds via rate-limiting ß-hydride elimination from a PdII-alkoxide intermediate, while H2Q oxidation features rate-limiting isomerization from an O-to-C-bound PdII-hydroquinonate species. The enhanced rate of H2Q oxidation reflects the kinetic facility of O─H relative to C─H bond cleavage.

7.
J Org Chem ; 86(22): 15875-15885, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34609137

ABSTRACT

Redox reactions are ubiquitous in organic synthesis and intrinsic to organic electrosynthesis. The language and concepts used to describe reactions in these domains are sufficiently different to create barriers that hinder broader adoption and understanding of electrochemical methods. To bridge these gaps, this Synopsis compares chemical and electrochemical redox reactions, including concepts of free energy, voltage, kinetic barriers, and overpotential. This discussion is intended to increase the accessibility of electrochemistry for organic chemists lacking formal training in this area.


Subject(s)
Chemistry, Organic , Intuition , Electrochemical Techniques , Electrochemistry , Oxidation-Reduction
8.
ACS Catal ; 11: 6363-6370, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34422447

ABSTRACT

Palladium(II)-catalyzed allylic acetoxylation has been the focus of extensive development and investigation. Methods that use molecular oxygen (O2) as the terminal oxidant typically benefit from the use of benzoquinone (BQ) and a transition-metal (TM) cocatalyst, such as Co(salophen), to support oxidation of Pd0 during catalytic turnover. We previously showed that Pd(OAc)2 and 4,5-diazafluoren-9-one (DAF) as an ancillary ligand catalyze allylic oxidation with O2 in the absence of cocatalysts. Herein, we show that BQ enhances DAF/Pd(OAc)2 catalytic activity, nearly matching the performance of reactions that include both BQ and Co(salophen). These observations are complemented by mechanistic studies of DAF/Pd(OAc)2 catalyst systems under three different oxidation conditions: (1) O2 alone, (2) O2 with cocatalytic BQ, and (3) O2 with cocatalytic BQ and Co(salophen). The beneficial effect of BQ in the absence of Co(salophen) is traced to synergistic roles of O2 and BQ, both of which are capable of oxidizing Pd0 to PdII The reaction of O2 generates H2O2 as a byproduct, which can oxidize hydroquinone to quinone in the presence of PdII NMR spectroscopic studies, however, show that hydroquinone is the predominant redox state of the quinone cocatalyst in the absence of Co(salophen), while inclusion of Co(salophen) maintains oxidized quinone throughout the reaction, resulting in better reaction performance.

9.
J Diabetes Sci Technol ; 15(2): 279-286, 2021 03.
Article in English | MEDLINE | ID: mdl-31744315

ABSTRACT

BACKGROUND: The use of near-continuous blood glucose (BG) monitoring has the potential to improve glycemic control in critically ill patients. The MANAGE IDE trial evaluated the performance of the OptiScanner (OS) 5000 in a multicenter cohort of 200 critically ill patients. METHODS: An Independent Group reviewed the BG run charts of all 200 patients and voted whether unblinded use of the OS, with alarms set at 90 and 130 to 150 mg/dL to alert the clinical team to impending hypoglycemia and hyperglycemia, respectively, would have eliminated episodes of dysglycemia: hypoglycemia, defined as a single BG <70 mg/dL; hyperglycemia, defined as >4 hours of BG >150 mg/dL; severe hyperglycemia, defined as >4 hours of BG >200 mg/dL and increased glucose variability (GV), defined as coefficient of variation (CV) >20%. RESULTS: At least one episode of dysglycemia occurred in 103 (51.5%) of the patients, including 6 (3.0%) with hypoglycemia, 83 (41.5%) with hyperglycemia, 18 (9.0%) with severe hyperglycemia, and 40 (20.0%) with increased GV. Unblinded use of the OS with appropriate alarms would likely have averted 97.1% of the episodes of dysglycemia: hypoglycemia (100.0%), hyperglycemia (96.4%), severe hyperglycemia (100.0%), and increased GV (97.5%). Point accuracy of the OS was very similar to that of the point of care BG monitoring devices used in the trial. CONCLUSION: Unblinded use of the OS would have eliminated nearly every episode of dysglycemia in this cohort of critically ill patients, thereby markedly improving the quality and safety of glucose control.


Subject(s)
Hyperglycemia , Hypoglycemia , Blood Glucose , Critical Illness , Humans , Hypoglycemia/prevention & control , Retrospective Studies
10.
J Am Chem Soc ; 142(46): 19678-19688, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33167610

ABSTRACT

Palladium(II)-catalyzed oxidation reactions represent an important class of methods for selective modification and functionalization of organic molecules. This field has benefitted greatly from the discovery of ancillary ligands that expand the scope, reactivity, and selectivity in these reactions; however, ancillary ligands also commonly poison these reactions. The different influences of ligands in these reactions remain poorly understood. For example, over the 60-year history of this field, the PdII/0 redox potentials for catalytically relevant Pd complexes have never been determined. Here, we report the unexpected discovery of (L)PdII(OAc)2-mediated oxidation of hydroquinones, the microscopic reverse of quinone-mediated oxidation of Pd0 commonly employed in PdII-catalyzed oxidation reactions. Analysis of redox equilibria arising from the reaction of (L)Pd(OAc)2 and hydroquinones (L = bathocuproine, 4,5-diazafluoren-9-one), generating reduced (L)Pd species and benzoquinones, provides the basis for determination of (L)PdII(OAc)2 reduction potentials. Experimental results are complemented by density functional theory calculations to show how a series of nitrogen-based ligands modulate the (L)PdII(OAc)2 reduction potential, thereby tuning the ability of PdII to serve as an effective oxidant of organic molecules in catalytic reactions.


Subject(s)
Acetates/chemistry , Coordination Complexes/chemistry , Organometallic Compounds/chemistry , Oxidants/chemistry , Benzoquinones/chemistry , Catalysis , Density Functional Theory , Fluorenes/chemistry , Hydroquinones/chemistry , Ligands , Models, Molecular , Oxidation-Reduction , Phenanthrolines/chemistry , Pyridines/chemistry
11.
J Am Chem Soc ; 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33155814

ABSTRACT

Substituted bithiophenes are prominent fragments in functional organic materials, and they are ideally prepared via direct oxidative C-H/C-H coupling. Here, we report a novel PdII catalyst system, employing 1,10-phenanthroline-5,6-dione (phd) as the ancillary ligand, that enables aerobic oxidative homocoupling of 2-bromothiophenes and other related heterocycles. These observations represent the first use of phd to support Pd-catalyzed aerobic oxidation. The reaction also benefits from a Cu(OAc)2 cocatalyst, and mechanistic studies show that Cu promotes C-C coupling, implicating a role for CuII different from its conventional contribution to reoxidation of the Pd catalyst.

12.
BMC Musculoskelet Disord ; 21(1): 71, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32019529

ABSTRACT

BACKGROUND: Total knee replacement (TKR) or total hip replacement (THR) are common and effective procedures in patients with osteoarthritis (OA) to restore physical function and reduce joint related pain. Patient education plays an important role in the treatment process aiming to develop necessary self-management skills to facilitate recovery and ensure long-term success. We have developed a mobile app (RECOVER-E) for iOS and Android smartphones which provides important information on the preoperative phase, surgery and recovery. The concomitant study will determine the efficacy of RECOVER-E on patients' surgical outcomes. METHODS/DESIGN: This study is a non-randomized, multi-centre (4 sites), double-arm, controlled trial with 1:1 assignment. 160 patients undergoing primary TKR or THR will be recruited from January until October 2019 in 4 German hospitals. Both groups will receive standard care. Additionally, the intervention group will use the app RECOVER-E. Measurements will be taken 4-6 weeks before surgery, on the day of admission to the hospital, on the first and 7th postoperative day and 3 months post-surgery. Primary outcome will be self-reported physical function measured on the activities of daily living (ADL) subscale of the Knee injury and Osteoarthritis Outcome Score (KOOS) and the Hip disability and Osteoarthritis Outcome Score (HOOS) for patients with knee and hip osteoarthritis, respectively. Secondary outcomes include the subscales for pain, symptoms, function in sport and recreation and knee/hip-related quality of life of the HOOS and KOOS, preoperative anxiety, measured by the Hospital Anxiety and Depression Scale (HADS), as well as, pain at rest and pain during activity measured by a numerical rating scale (NRS). Primary endpoint is 3 months post-surgery. DISCUSSION: Mobile Health (mHealth) has become increasingly important in patient-centred health care aiming to enhance patient involvement and self-management capabilities. To our knowledge this is the first study to investigate the effect of an evidence-based mobile app on patient reported outcomes after joint replacement. This study should provide evidence supporting the use of mHealth to facilitate recovery and open up new possibilities for patient care in joint replacement. TRIAL REGISTRATION: DRKS Data Management retrospectively registered. DRKS-ID: DRKS00012744.


Subject(s)
Arthralgia/therapy , Mobile Applications , Osteoarthritis, Hip/therapy , Osteoarthritis, Knee/therapy , Patient Education as Topic/methods , Perioperative Care/methods , Activities of Daily Living , Adult , Anxiety/etiology , Anxiety/prevention & control , Arthralgia/diagnosis , Arthralgia/etiology , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/psychology , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Knee/psychology , Controlled Clinical Trials as Topic , Exercise Therapy/methods , Female , Follow-Up Studies , Humans , Male , Multicenter Studies as Topic , Osteoarthritis, Hip/complications , Osteoarthritis, Knee/complications , Patient Reported Outcome Measures , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Quality of Life , Self-Management/methods , Treatment Outcome
14.
Clin Chem ; 65(12): 1554-1562, 2019 12.
Article in English | MEDLINE | ID: mdl-31672858

ABSTRACT

BACKGROUND: Analytical characteristics of methods to measure biomarkers determine how well the methods measure what they claim to measure. Transparent reporting of analytical characteristics allows readers to assess the validity and generalizability of clinical studies in which biomarkers are used. Our aims were to assess the reporting of analytical characteristics of biomarkers used in clinical research and to evaluate the extent of reported characterization procedures for assay precision. METHODS: We searched 5 medical journals (Annals of Internal Medicine, JAMA: The Journal of the American Medical Association, The Lancet, The New England Journal of Medicine, and PLOS Medicine) over a 10-year period for the term "biomarker" in the full-text field. We included studies in which biomarkers were used for inclusion/exclusion of study participants, for patient classification, or as a study outcome. We tabulated the frequencies of reporting of 11 key analytical characteristics (such as analytical accuracy of test results) in the included studies. RESULTS: A total of 544 studies and 1299 biomarker uses met the inclusion criteria. No information on analytical characteristics was reported for 67% of the biomarkers. For 65 biomarkers (3%), ≥4 characteristics were reported (range, 4-8). The manufacturer of the measurement procedure could not be determined for 688 (53%) of the 1299 biomarkers. The extent of assessments of assay imprecision, when reported, did not meet expectations for clinical use of biomarkers. CONCLUSIONS: Reporting of the analytical performance of biomarker measurements is variable and often absent from published clinical studies. We suggest that readers need fuller reporting of analytical characteristics to interpret study results, assess generalizability of conclusions, and compare results among clinical studies.


Subject(s)
Biomarkers/analysis , Reproducibility of Results , Data Analysis , Humans , Publishing/trends
15.
Arch Pathol Lab Med ; 143(8): 990-998, 2019 08.
Article in English | MEDLINE | ID: mdl-30785786

ABSTRACT

CONTEXT.­: Turnaround time and productivity of clinical mass spectrometric (MS) testing are hampered by time-consuming manual review of the analytical quality of MS data before release of patient results. OBJECTIVE.­: To determine whether a classification model created by using standard machine learning algorithms can verify analytically acceptable MS results and thereby reduce manual review requirements. DESIGN.­: We obtained retrospective data from gas chromatography-MS analyses of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in 1267 urine samples. The data for each sample had been labeled previously as either analytically unacceptable or acceptable by manual review. The dataset was randomly split into training and test sets (848 and 419 samples, respectively), maintaining equal proportions of acceptable (90%) and unacceptable (10%) results in each set. We used stratified 10-fold cross-validation in assessing the abilities of 6 supervised machine learning algorithms to distinguish unacceptable from acceptable assay results in the training dataset. The classifier with the highest recall was used to build a final model, and its performance was evaluated against the test dataset. RESULTS.­: In comparison testing of the 6 classifiers, a model based on the Support Vector Machines algorithm yielded the highest recall and acceptable precision. After optimization, this model correctly identified all unacceptable results in the test dataset (100% recall) with a precision of 81%. CONCLUSIONS.­: Automated data review identified all analytically unacceptable assays in the test dataset, while reducing the manual review requirement by about 87%. This automation strategy can focus manual review only on assays likely to be problematic, allowing improved throughput and turnaround time without reducing quality.


Subject(s)
Algorithms , Clinical Laboratory Techniques/standards , Machine Learning , Mass Spectrometry/standards , Automation, Laboratory/methods , Automation, Laboratory/standards , Clinical Laboratory Techniques/methods , Dronabinol/analogs & derivatives , Dronabinol/urine , Gas Chromatography-Mass Spectrometry , Humans , Mass Spectrometry/methods , Reference Standards , Reproducibility of Results , Retrospective Studies
17.
Clin Chim Acta ; 476: 67-74, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29154790

ABSTRACT

BACKGROUND: Unrecognized hemoglobinopathies can lead to measured hemoglobin A1c (Hb A1c) concentrations that are erroneous or misleading. We determined the effects of rare hemoglobin variants on capillary electrophoresis (CE) and HPLC methods for measurement of Hb A1c. METHODS: We prospectively investigated samples in which Hb A1c was measured by CE during a 14-month period. For samples in which the electropherograms suggested the presence of rare hemoglobinopathies, hemoglobin variants were identified by molecular analysis or by comparison with electropherograms of known variants. When sample volume permitted, Hb A1c was measured by 2 HPLC measurement procedures and by boronate affinity HPLC. RESULTS: Hb A1c was measured by CE in 33,859 samples from 26,850 patients. 15 patients (0.06%) were identified as having rare hemoglobinopathies: Hbs A2 prime, Agenogi, Fannin-Lubbock I, G Philadelphia, G San Jose, J Baltimore, La Desirade, N Baltimore, Nouakchott, and Roanne. Among 6 of these samples tested by 2 ion-exchange HPLC methods, the rare Hb was detected by both HPLC methods in only one sample, and none were detected by boronate affinity HPLC. The mean of the Hb A1c results of 2 HPLC methods differed from the result of the CE method by 0.7-2.2% Hb A1c in samples with variant hemoglobins versus <0.2% Hb A1c in samples without variants. CONCLUSION: Measurement procedures differ in the ability to detect the presence of rare Hb variants and to quantify Hb A1c in patients who harbor such variants.


Subject(s)
Glycated Hemoglobin/genetics , Hemoglobins, Abnormal/genetics , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Genetic Variation/genetics , Glycated Hemoglobin/analysis , Hemoglobins, Abnormal/analysis , Humans , Prospective Studies
19.
Clin Chim Acta ; 473: 9-13, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28803746

ABSTRACT

BACKGROUND: Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. METHODS: Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. RESULTS: As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (p<0.01), LD (p<0.01), and potassium (p<0.02) in plasma. Removing air space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (p<0.02 vs conventionally filled collection tube). Clotted blood developed less foaming during PTS transport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (p<0.03) in serum than in plasma after PTS sample transport. CONCLUSIONS: Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis.


Subject(s)
Air , Blood Specimen Collection/instrumentation , Hemolysis , Artifacts , Blood Coagulation , Heparin/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...