Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(47): 29684-29690, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33184177

ABSTRACT

Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein-protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor ([Formula: see text] Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein-protein interaction involved in actin filament processing and cell migration.


Subject(s)
Breast Neoplasms/drug therapy , Cell Adhesion Molecules/metabolism , DNA-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Jurkat Cells , Proline/metabolism , Protein Binding/drug effects , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...