Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 134(2): 024524, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21241137

ABSTRACT

The recently reported photoswitching of diarylethene derivative molecules bridging carbon nanotube (CNT) contacts is theoretically analyzed. The short lifetime of the lowest unoccupied molecular orbital (LUMO) indicates that neither the open nor closed form of the molecule can be photoexcited into a charge-neutral excited state for any appreciable length of time preventing photochromic ring opening. Analysis of the highest occupied molecular orbital (HOMO) and LUMO lifetimes also suggests that photoexcitation results in oxidation of the molecules. This either reduces the quantum yield of photochromic ring closing, or it gives rise to the possibility of oxidative ring closing. Analysis of the resistance values and energy levels indicates that the HOMO energy levels of the closed isomers relevant for transport must lie within a few k(B)T of the CNT Fermi level. For armchair contacts, the change in resistance with isomer or substituent group is the result of shifts in the energy level of the molecular HOMO. The coupling of the molecular HOMO to the CNT contacts is insensitive to the isomer type or substituent group. For zigzag CNTs, the conductance is dominated by surface states at the Fermi level on the cut ends of the CNTs so that the conductance is relatively insensitive to the isomer type, and the conductance switching ratio is low. Multiple bridging molecules can interact coherently, resulting in energy splitting, shifting, and interference that cause a nonlinear change in conductance with increasing numbers of molecules. Instead of a factor of 3 increase in conductance expected for three independent channels, a factor of 10(3) increase in conductance is obtained for three bridging molecules.


Subject(s)
Ethylenes/chemistry , Nanotubes, Carbon/chemistry , Molecular Structure , Quantum Theory
2.
Small ; 2(11): 1356-65, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17192987

ABSTRACT

Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self-assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of single-walled carbon nanotubes (SWNTs) functionalized with carboxylic groups and single-stranded DNA (ssDNA) sequences possessing terminal amino groups on both ends, hybridized together through amide linkages by adopting a straightforward synthetic route. Morphological and chemical-functional characterization of the nanoarchitectures are investigated using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrical measurements (I-V characterization) of the nanoarchitectures demonstrate negative differential resistance in the presence of SWNT/ssDNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. I-V characterization on platinum-metallized SWNT-ssDNA nanoarchitectures via salt reduction indicates modulation of their electrical properties, with effects ranging from those of a resonant tunneling diode to a resistor, depending on the amount of metallization. Electron transport through the nanoarchitectures has been analyzed by density functional theory calculations. Our studies illustrate the great promise of biomimetic assembly of functional nanosystems based on biotemplated materials and present new avenues toward exciting future opportunities in nanoelectronics and nanobiotechnology.


Subject(s)
DNA/chemistry , Nanotubes, Carbon/chemistry , Platinum/chemistry , DNA, Single-Stranded/chemistry , Electrochemistry/methods , Electronics , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Models, Theoretical , Nanoparticles , Nanotechnology/methods , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...