Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 272(24): 6324-35, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16336269

ABSTRACT

Genomic sequencing of the methanotrophic bacterium, Methylococcus capsulatus (Bath), revealed an open reading frame (MCA2590) immediately upstream of the previously described mopE gene (MCA2589). Sequence analyses of the deduced amino acid sequence demonstrated that the MCA2590-encoded protein shared significant, but restricted, sequence similarity to the bacterial di-heme cytochrome c peroxidase (BCCP) family of proteins. Two putative C-type heme-binding motifs were predicted, and confirmed by positive heme staining. Immunospecific recognition and biotinylation of whole cells combined with MS analyses confirmed expression of MCA2590 in M. capsulatus as a protein noncovalently associated with the cellular surface of the bacterium exposed to the cell exterior. Similar to MopE, expression of MCA2590 is regulated by the bioavailability of copper and is most abundant in M. capsulatus cultures grown under low copper conditions, thus indicating an important physiological role under these growth conditions. MCA2590 is distinguished from previously characterized members of the BCCP family by containing a much longer primary sequence that generates an increased distance between the two heme-binding motifs in its primary sequence. Furthermore, the surface localization of MCA2590 is in contrast to the periplasmic location of the reported BCCP members. Based on our experimental and bioinformatical analyses, we suggest that MCA2590 is a member of a novel group of bacterial di-heme cytochrome c peroxidases not previously characterized.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome-c Peroxidase/chemistry , Heme/chemistry , Methylococcus capsulatus/chemistry , Amino Acid Sequence , Copper/pharmacology , Membrane Proteins/chemistry , Sequence Alignment , Sequence Analysis, Protein
2.
FEBS J ; 272(10): 2428-40, 2005 May.
Article in English | MEDLINE | ID: mdl-15885093

ABSTRACT

For a long time, the haemerythrin family of proteins was considered to be restricted to only a few phyla of marine invertebrates. When analysing differential protein expression in the methane-oxidizing bacterium, Methylococcus capsulatus (Bath), grown at a high and low copper-to-biomass ratio, respectively, we identified a putative prokaryotic haemerythrin expressed in high-copper cultures. Haemerythrins are recognized by a conserved sequence motif that provides five histidines and two carboxylate ligands which coordinate two iron atoms. The diiron site is located in a hydrophobic pocket and is capable of binding O(2). We cloned the M. capsulatus haemerythrin gene and expressed it in Escherichia coli as a fusion protein with NusA. The haemerythrin protein was purified to homogeneity cleaved from its fusion partner. Recombinant M. capsulatus haemerythrin (McHr) was found to fold into a stable protein. Sequence similarity analysis identified all the candidate residues involved in the binding of diiron (His22, His58, Glu62, His77, His81, His117, Asp122) and the amino acids forming the hydrophobic pocket in which O(2) may bind (Ile25, Phe59, Trp113, Leu114, Ile118). We were also able to model a three-dimensional structure of McHr maintaining the correct positioning of these residues. Furthermore, UV/vis spectrophotometric analysis demonstrated the presence of conjugated diiron atoms in McHr. A comprehensive genomic database search revealed 21 different prokaryotes containing the haemerythrin signature (PROSITE 00550), indicating that these putative haemerythrins may be a conserved prokaryotic subfamily.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hemerythrin/chemistry , Hemerythrin/metabolism , Methylococcus capsulatus/chemistry , Amino Acid Sequence , Bacterial Proteins/classification , Bacterial Proteins/genetics , Base Sequence , Cloning, Molecular , Hemerythrin/classification , Hemerythrin/genetics , Metals/chemistry , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment
3.
Microbiology (Reading) ; 148(Pt 11): 3395-3403, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12427931

ABSTRACT

Native and recombinant FomA proteins were extracted by detergent from the cell envelopes of Fusobacterium nucleatum and Escherichia coli, and purified to near homogeneity by chromatography. Circular dichroism analysis revealed that the FomA protein consists predominantly of beta-sheets, in line with the previously proposed 16-stranded beta-barrel topology model. Results obtained by trypsin treatment of intact cells and cell envelopes of F. nucleatum, and from limited proteolysis of purified FomA protein, indicated that the N-terminal part of the FomA protein is not an integral part of the beta-barrel, but forms a periplasmic domain. Based on these results a new topology model is proposed for the FomA protein, where the C-terminal part forms a 14-stranded beta-barrel separate from the periplasmic N-terminal domain.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Fusobacterium nucleatum/chemistry , Amino Acid Sequence , Bacterial Outer Membrane Proteins/isolation & purification , Circular Dichroism , Escherichia coli/chemistry , Membrane Proteins/chemistry , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...