Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Math Biol ; 85(11): 108, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775681

ABSTRACT

Mountain pine beetle (MPB) in Canada have spread well beyond their historical range. Accurate modelling of the long-term dynamics of MPB is critical for assessing the risk of further expansion and informing management strategies, particularly in the context of climate change and variable forest resilience. Most previous models have focused on capturing a single outbreak without tree replacement. While these models are useful for understanding MPB biology and outbreak dynamics, they cannot accurately model long-term forest dynamics. Past models that incorporate forest growth tend to simplify beetle dynamics. We present a new model that couples forest growth to MPB population dynamics and accurately captures key aspects of MPB biology, including a threshold for the number of beetles needed to overcome tree defenses and beetle aggregation that facilitates mass attacks. These mechanisms lead to a demographic Allee effect, which is known to be important in beetle population dynamics. We show that as forest resilience decreases, a fold bifurcation emerges and there is a stable fixed point with a non-zero MPB population. We derive conditions for the existence of this equilibrium. We then simulate biologically relevant scenarios and show that the beetle population approaches this equilibrium with transient boom and bust cycles with period related to the time of forest recovery. As forest resilience decreases, the Allee threshold also decreases. Thus, if host resilience decreases under climate change, for example under increased stress from drought, then the lower Allee threshold makes transient outbreaks more likely to occur in the future.

2.
Commun Biol ; 5(1): 874, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008589

ABSTRACT

To advance understanding of biodiversity and ecosystem function, ecologists seek widely applicable relationships among species diversity and other ecosystem characteristics such as species productivity, biomass, and abundance. These metrics vary widely across ecosystems and no relationship among any combination of them that is valid across habitats, taxa, and spatial scales, has heretofore been found. Here we derive such a relationship, an equation of state, among species richness, energy flow, biomass, and abundance by combining results from the Maximum Entropy Theory of Ecology and the Metabolic Theory of Ecology. It accurately captures the relationship among these state variables in 42 data sets, including vegetation and arthropod communities, that span a wide variety of spatial scales and habitats. The success of our ecological equation of state opens opportunities for estimating difficult-to-measure state variables from measurements of others, adds support for two current theories in ecology, and is a step toward unification in ecology.


Subject(s)
Arthropods , Ecosystem , Animals , Biodiversity , Biomass , Entropy
3.
Ecol Lett ; 24(10): 2043-2053, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34350680

ABSTRACT

The description of spatial patterns in species distributions is central to research throughout ecology. In this manuscript, we demonstrate that five of the most widely used species-level spatial patterns are not only related, but can in fact be quantitatively derived from each other under minimal assumptions: the occupancy area curve, Taylor's Law, the neighborhood density function, a two-plot variant of Taylor's Law and two-plot single-species turnover. We present an overarching mathematical framework and derivations for several theoretical example cases, along with a simulation study and empirical analysis that applies the framework to data from the Barro Colorado Island tropical forest plot. We discuss how knowledge of this mathematical relationship can support the testing of ecological theory, suggest efficient field sampling schemes, highlight the relative importance of plot area and abundance in driving turnover patterns and lay the groundwork for future unified theories of community-level spatial metrics and multi-patch spatial patterns.


Subject(s)
Forests , Models, Biological , Colorado , Computer Simulation
4.
Ecol Lett ; 24(5): 935-949, 2021 May.
Article in English | MEDLINE | ID: mdl-33677842

ABSTRACT

The Maximum Entropy Theory of Ecology (METE) predicts the shapes of macroecological metrics in relatively static ecosystems, across spatial scales, taxonomic categories and habitats, using constraints imposed by static state variables. In disturbed ecosystems, however, with time-varying state variables, its predictions often fail. We extend macroecological theory from static to dynamic by combining the MaxEnt inference procedure with explicit mechanisms governing disturbance. In the static limit, the resulting theory, DynaMETE, reduces to METE but also predicts a new scaling relationship among static state variables. Under disturbances, expressed as shifts in demographic, ontogenic growth or migration rates, DynaMETE predicts the time trajectories of the state variables as well as the time-varying shapes of macroecological metrics such as the species abundance distribution and the distribution of metabolic rates over individuals. An iterative procedure for solving the dynamic theory is presented. Characteristic signatures of the deviation from static predictions of macroecological patterns are shown to result from different kinds of disturbance. By combining MaxEnt inference with explicit dynamical mechanisms of disturbance, DynaMETE is a candidate theory of macroecology for ecosystems responding to anthropogenic or natural disturbances.


Subject(s)
Ecosystem , Models, Biological , Ecology , Entropy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...