Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chem Rev ; 123(13): 8069-8098, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37343385

ABSTRACT

Electrochemical carbon capture and concentration (eCCC) offers a promising alternative to thermochemical processes as it circumvents the limitations of temperature-driven capture and release. This review will discuss a wide range of eCCC approaches, starting with the first examples reported in the 1960s and 1970s, then transitioning into more recent approaches and future outlooks. For each approach, the achievements in the field, current challenges, and opportunities for improvement will be described. This review is a comprehensive survey of the eCCC field and evaluates the chemical, theoretical, and electrochemical engineering aspects of different methods to aid in the development of modern economical eCCC technologies that can be utilized in large-scale carbon capture and sequestration (CCS) processes.

2.
ACS Nano ; 17(5): 4999-5013, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36812031

ABSTRACT

Laser reduction of polymers has recently been explored to rapidly and inexpensively synthesize high-quality graphitic and carbonaceous materials. However, in past work, laser-induced graphene has been restricted to semiaromatic polymers and graphene oxide; in particular, poly(acrylonitrile) (PAN) is claimed to be a polymer that cannot be laser-reduced successfully to form electrochemically active material. In this work, three strategies to surmount this barrier are employed: (1) thermal stabilization of PAN to increase its sp2 content for improved laser processability, (2) prelaser treatment microstructuring to reduce the effects of thermal stresses, and (3) Bayesian optimization to search the parameter space of laser processing to improve performance and discover morphologies. Based on these approaches, we successfully synthesize laser-reduced PAN with a low sheet resistance (6.5 Ω sq-1) in a single lasing step. The resulting materials are tested electrochemically, and their applicability as membrane electrodes for vanadium redox flow batteries is demonstrated. This work demonstrates electrodes that are processed in air, below 300 °C, which are cycled stably over 2 weeks at 40 mA cm-2, motivating further development of laser reduction of porous polymers for membrane electrode applications such as RFBs.

3.
Chem Asian J ; 18(5): e202201171, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36632659

ABSTRACT

Increasing redox-active species concentrations can improve viability for organic redox flow batteries by enabling higher energy densities, but the required concentrated solutions can become viscous and less conductive, leading to inefficient electrochemical cycling and low material utilization at higher current densities. To better understand these tradeoffs in a model system, we study a highly soluble and stable redox-active couple, N-(2-(2-methoxyethoxy)ethyl)phenothiazine (MEEPT), and its bis(trifluoromethanesulfonyl)imide radical cation salt (MEEPT-TFSI). We measure the physicochemical properties of electrolytes containing 0.2-1 M active species and connect these to symmetric cell cycling behavior, achieving robust cycling performance. Specifically, for a 1 M electrolyte concentration, we demonstrate 94% materials utilization, 89% capacity retention, and 99.8% average coulombic efficiency over 435 h (100 full cycles). This demonstration helps to establish potential for high-performing, concentrated nonaqueous electrolytes and highlights possible failure modes in such systems.

4.
Langmuir ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607828

ABSTRACT

Redox flow batteries (RFBs) are a promising electrochemical technology for the efficient and reliable delivery of electricity, providing opportunities to integrate intermittent renewable resources and to support unreliable and/or aging grid infrastructure. Within the RFB, porous carbonaceous electrodes facilitate the electrochemical reactions, distribute the flowing electrolyte, and conduct electrons. Understanding electrode reaction kinetics is crucial for improving RFB performance and lowering costs. However, assessing reaction kinetics on porous electrodes is challenging as their complex structure frustrates canonical electroanalytical techniques used to quantify performance descriptors. Here, we outline a strategy to estimate electron transfer kinetics on planar electrode materials of similar surface chemistry to those used in RFBs. First, we describe a bottom-up synthetic process to produce flat, dense carbon films to enable the evaluation of electron transfer kinetics using traditional electrochemical approaches. Next, we characterize the physicochemical properties of the films using a suite of spectroscopic methods, confirming that their surface characteristics align with those of widely used porous electrodes. Last, we study the electrochemical performance of the films in a custom-designed cell architecture, extracting intrinsic heterogeneous kinetic rate constants for two iron-based redox couples in aqueous electrolytes using standard electrochemical methods (i.e., cyclic voltammetry, electrochemical impedance, and spectroscopy). We anticipate that the synthetic methods and experimental protocols described here are applicable to a range of electrocatalysts and redox couples.

5.
ACS Omega ; 7(44): 40540-40547, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385869

ABSTRACT

Metal-air batteries are a promising energy storage solution, but material limitations (e.g., metal passivation and low active material utilization) have stymied their adoption. We investigate a solid fuel flow battery (SFFB) architecture that combines the energy density of metal-air batteries with the modularity of redox flow batteries. Specifically, a metallic solid electrochemical fuel (SEF) is spatially separated from the anodic current collector, a dissolved redox mediator (RM) shuttles charges between the two, and an oxygen reduction cathode completes the circuit. This modification decouples power and energy system components while enabling mechanical recharging and mitigating the effects of nonuniform metal oxidation. We conduct an exploratory study showing that metallic SEFs can chemically reduce organic RMs repeatedly. We subsequently operate a proof-of-concept SFFB cell for ca. 25 days as an initial demonstration of technical feasibility. Overall, this work illustrates the potential of this storage concept and highlights scientific and engineering pathways to improvement.

6.
Chem Soc Rev ; 51(20): 8415-8433, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36128984

ABSTRACT

Developing improved methods for CO2 capture and concentration (CCC) is essential to mitigating the impact of our current emissions and can lead to carbon net negative technologies. Electrochemical approaches for CCC can achieve much higher theoretical efficiencies compared to the thermal methods that have been more commonly pursued. The use of redox carriers, or molecular species that can bind and release CO2 depending on their oxidation state, is an increasingly popular approach as carrier properties can be tailored for different applications. The key requirements for stable and efficient redox carriers are discussed in the context of chemical scaling relationships and operational conditions. Computational and experimental approaches towards developing redox carriers with optimal properties are also described.


Subject(s)
Carbon Dioxide , Carbon , Carbon Dioxide/chemistry , Oxidation-Reduction
7.
ACS Appl Mater Interfaces ; 13(45): 53746-53757, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34734523

ABSTRACT

Redox flow batteries (RFBs) are a burgeoning electrochemical platform for long-duration energy storage, but present embodiments are too expensive for broad adoption. Nonaqueous redox flow batteries (NAqRFBs) seek to reduce system costs by leveraging the large electrochemical stability window of organic solvents (>3 V) to operate at high cell voltages and to facilitate the use of redox couples that are incompatible with aqueous electrolytes. However, a key challenge for emerging nonaqueous chemistries is the lack of membranes/separators with suitable combinations of selectivity, conductivity, and stability. Single-ion conducting ceramics, integrated into a flexible polymer matrix, may offer a pathway to attain performance attributes needed for enabling competitive nonaqueous systems. Here, we explore composite polymer-inorganic binder-filler membranes for lithium-based NAqRFBs, investigating two different ceramic compounds with NASICON-type (NASICON: sodium (Na) superionic conductor) crystal structure, Li1.3Al0.3Ti1.7(PO4)3 (LATP) and Li1.4Al0.4Ge0.2Ti1.4(PO4)3 (LAGTP), each blended with a polyvinylidene fluoride (PVDF) polymeric matrix. We characterize the physicochemical and electrochemical properties of the synthesized membranes as a function of processing conditions and formulation using a range of microscopic and electrochemical techniques. Importantly, the electrochemical stability window of the as-prepared membranes lies between 2.2-4.5 V vs Li/Li+. We then integrate select composite membranes into a single electrolyte flow cell configuration and perform polarization measurements with different redox electrolyte compositions. We find that mechanically robust, chemically stable LATP/PVDF composites can support >40 mA cm-2 at 400 mV cell overpotential, but further improvements are needed in selectivity. Overall, the insights gained through this work begin to establish the foundational knowledge needed to advance composite polymer-inorganic membranes/separators for NAqRFBs.

8.
Adv Mater ; 33(16): e2006716, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33650154

ABSTRACT

Porous carbonaceous electrodes are performance-defining components in redox flow batteries (RFBs), where their properties impact the efficiency, cost, and durability of the system. The overarching challenge is to simultaneously fulfill multiple seemingly contradictory requirements-i.e., high surface area, low pressure drop, and facile mass transport-without sacrificing scalability or manufacturability. Here, non-solvent induced phase separation (NIPS) is proposed as a versatile method to synthesize tunable porous structures suitable for use as RFB electrodes. The variation of the relative concentration of scaffold-forming polyacrylonitrile to pore-forming poly(vinylpyrrolidone) is demonstrated to result in electrodes with distinct microstructure and porosity. Tomographic microscopy, porosimetry, and spectroscopy are used to characterize the 3D structure and surface chemistry. Flow cell studies with two common redox species (i.e., all-vanadium and Fe2+/3+ ) reveal that the novel electrodes can outperform traditional carbon fiber electrodes. It is posited that the bimodal porous structure, with interconnected large (>50 µm) macrovoids in the through-plane direction and smaller (<5 µm) pores throughout, provides a favorable balance between offsetting traits. Although nascent, the NIPS synthesis approach has the potential to serve as a technology platform for the development of porous electrodes specifically designed to enable electrochemical flow technologies.

9.
Proc Natl Acad Sci U S A ; 117(23): 12550-12557, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32513683

ABSTRACT

Energy storage is an integral part of modern society. A contemporary example is the lithium (Li)-ion battery, which enabled the launch of the personal electronics revolution in 1991 and the first commercial electric vehicles in 2010. Most recently, Li-ion batteries have expanded into the electricity grid to firm variable renewable generation, increasing the efficiency and effectiveness of transmission and distribution. Important applications continue to emerge including decarbonization of heavy-duty vehicles, rail, maritime shipping, and aviation and the growth of renewable electricity and storage on the grid. This perspective compares energy storage needs and priorities in 2010 with those now and those emerging over the next few decades. The diversity of demands for energy storage requires a diversity of purpose-built batteries designed to meet disparate applications. Advances in the frontier of battery research to achieve transformative performance spanning energy and power density, capacity, charge/discharge times, cost, lifetime, and safety are highlighted, along with strategic research refinements made by the Joint Center for Energy Storage Research (JCESR) and the broader community to accommodate the changing storage needs and priorities. Innovative experimental tools with higher spatial and temporal resolution, in situ and operando characterization, first-principles simulation, high throughput computation, machine learning, and artificial intelligence work collectively to reveal the origins of the electrochemical phenomena that enable new means of energy storage. This knowledge allows a constructionist approach to materials, chemistries, and architectures, where each atom or molecule plays a prescribed role in realizing batteries with unique performance profiles suitable for emergent demands.

10.
ChemSusChem ; 13(2): 400-411, 2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31736202

ABSTRACT

Managing the gas-liquid interface within gas-diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver-catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double-layer capacitance, a proxy for wetted electrode area. Plotting current-dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half-reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post-test GDEs retain less hydrophobicity than pristine materials and that water-rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.

11.
J Biol Chem ; 294(10): 3661-3669, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30602564

ABSTRACT

Molecular oxygen (O2)-utilizing enzymes are among the most important in biology. The abundance of O2, its thermodynamic power, and the benign nature of its end products have raised interest in oxidases and oxygenases for biotechnological applications. Although most O2-dependent enzymes have an absolute requirement for an O2-activating cofactor, several classes of oxidases and oxygenases accelerate direct reactions between substrate and O2 using only the protein environment. Nogalamycin monooxygenase (NMO) from Streptomyces nogalater is a cofactor-independent enzyme that catalyzes rate-limiting electron transfer between its substrate and O2 Here, using enzyme-kinetic, cyclic voltammetry, and mutagenesis methods, we demonstrate that NMO initially activates the substrate, lowering its pKa by 1.0 unit (ΔG* = 1.4 kcal mol-1). We found that the one-electron reduction potential, measured for the deprotonated substrate both inside and outside the protein environment, increases by 85 mV inside NMO, corresponding to a ΔΔG0' of 2.0 kcal mol-1 (0.087 eV) and that the activation barrier, ΔG‡, is lowered by 4.8 kcal mol-1 (0.21 eV). Applying the Marcus model, we observed that this suggests a sizable decrease of 28 kcal mol-1 (1.4 eV) in the reorganization energy (λ), which constitutes the major portion of the protein environment's effect in lowering the reaction barrier. A similar role for the protein has been proposed in several cofactor-dependent systems and may reflect a broader trend in O2-utilizing proteins. In summary, NMO's protein environment facilitates direct electron transfer, and NMO accelerates rate-limiting electron transfer by strongly lowering the reorganization energy.


Subject(s)
Mixed Function Oxygenases/metabolism , Nogalamycin/metabolism , Oxygen/metabolism , Catalytic Domain , Electron Transport , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Models, Molecular , Mutagenesis , Streptomyces/enzymology , Temperature , Thermodynamics
12.
ACS Appl Energy Mater ; 2(7): 4907-4913, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-33778417

ABSTRACT

We report a class of perfunctionalized dodecaborate clusters that exhibit high stability towards high concentration electrochemical cycling. These boron clusters afford several degrees of freedom in material design to tailor properties including solubility and redox potential. The exceptional stability of these clusters was demonstrated using a symmetric flow cell setup for electrochemical cycling between two oxidation states for 45 days, with post-run analysis showing negligible decomposition of the active species (<0.1%). To further probe the limits of this system, a prototype redox flow battery with two different cluster materials was used to determine mutual compatibility. This work effectively illustrates the potential of bespoke boron clusters as robust material platform for electrochemical energy conversion and storage.

13.
ACS Appl Mater Interfaces ; 10(51): 44430-44442, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30335358

ABSTRACT

Sluggish vanadium reaction rates on the porous carbon electrodes typically used in redox flow batteries have prompted research into pretreatment strategies, most notably thermal oxidation, to improve performance. While effective, these approaches have nuanced and complex effects on electrode characteristics hampering the development of explicit structure-function relations that enable quantitative correlation between specific properties and overall electrochemical performance. Here, we seek to resolve these relationships through rigorous analysis of thermally pretreated SGL 29AA carbon paper electrodes using a suite of electrochemical, microscopic, and spectroscopic techniques and culminating in full cell testing. We systematically vary pretreatment temperature, from 400 to 500 °C, while holding pretreatment time constant at 30 h, and evaluate changes in the physical, chemical, and electrochemical properties of the electrodes. We find that several different parameters contribute to observed performance, including hydrophilicity, microstructure, electrochemical surface area, and surface chemistry, and it is important to note that not all of these properties improve with increasing pretreatment temperature. Consequently, while the best overall performance is achieved with a 475 °C pretreatment, this enhancement is achieved from a balance, rather than a maximization, of critical properties. A deeper understanding of the role each property plays in battery performance is the first step toward developing targeted pretreatment strategies that may enable transformative performance improvements.

14.
Langmuir ; 33(43): 11911-11918, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28927271

ABSTRACT

Irreversible changes to the morphology of glassy carbon (GC) electrodes at potentials between 3.5 and 4.5 V vs Li/Li+ in propylene carbonate (PC) solvent containing lithium hexafluorophosphate (LiPF6) are reported. Analysis of cyclic voltammetry (CV) experiments in the range of 3.0 to 6.0 V shows that the capacitance of the electrochemical double-layer increased irreversibly beginning at potentials as low as 3.5 V. These changes resulted from nonfaradaic interactions, and were not due to oxidative electrochemical decomposition of the electrode and electrolyte, anion intercalation, nor caused by the presence of water, a common impurity in organic electrolyte solutions. Atomic force microscopy (AFM) images revealed that increasing the potential of a bare GC surface from 3.0 to 4.5 V resulted in a 6× increase in roughness, in good agreement with the changes in double-layer capacitance. Treating the GC surface via exposure to trichloromethylsilane vapors resulted in a stable double-layer capacitance between 3.0 and 4.5 V, and this treatment also correlated with less roughening. These results inform future efforts aimed at controlling surface composition and morphology of carbon electrodes.

15.
Angew Chem Int Ed Engl ; 56(26): 7496-7499, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28544547

ABSTRACT

Polymer electrolyte membranes employed in contemporary fuel cells severely limit device design and restrict catalyst choice, but are essential for preventing short-circuiting reactions at unselective anode and cathode catalysts. Herein, we report that nickel sulfide Ni3 S2 is a highly selective catalyst for the oxygen reduction reaction in the presence of 1.0 m formate. We combine this selective cathode with a carbon-supported palladium (Pd/C) anode to establish a membrane-free, room-temperature formate fuel cell that operates under benign neutral pH conditions. Proof-of-concept cells display open circuit voltages of approximately 0.7 V and peak power values greater than 1 mW cm-2 , significantly outperforming the identical device employing an unselective platinum (Pt) cathode. The work establishes the power of selective catalysis to enable versatile membrane-free fuel cells.

16.
ChemSusChem ; 10(9): 2080-2088, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28177578

ABSTRACT

Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm-1 ) and cycle at 20 mA cm-2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts.


Subject(s)
Electric Power Supplies , Ions , Acetonitriles , Borates , Boric Acids/chemistry , Economics , Electric Power Supplies/economics , Electrolytes , Equipment Design , Feasibility Studies , Oxidation-Reduction
17.
Sci Rep ; 6: 32102, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27558638

ABSTRACT

In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

18.
Sci Rep ; 6: 28054, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27307136

ABSTRACT

It is shown that surface conduction can stabilize electrodeposition in random, charged porous media at high rates, above the diffusion-limited current. After linear sweep voltammetry and impedance spectroscopy, copper electrodeposits are visualized by scanning electron microscopy and energy dispersive spectroscopy in two different porous separators (cellulose nitrate, polyethylene), whose surfaces are modified by layer-by-layer deposition of positive or negative charged polyelectrolytes. Above the limiting current, surface conduction inhibits growth in the positive separators and produces irregular dendrites, while it enhances growth and suppresses dendrites behind a deionization shock in the negative separators, also leading to improved cycle life. The discovery of stable uniform growth in the random media differs from the non-uniform growth observed in parallel nanopores and cannot be explained by classic quasi-steady "leaky membrane" models, which always predict instability and dendritic growth. Instead, the experimental results suggest that transient electro-diffusion in random porous media imparts the stability of a deionization shock to the growing metal interface behind it. Shock electrodeposition could be exploited to enhance the cycle life and recharging rate of metal batteries or to accelerate the fabrication of metal matrix composite coatings.

19.
ChemSusChem ; 9(15): 1904-10, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27337680

ABSTRACT

Electrocatalytic hydrogenation (ECH) is a sustainable pathway for the synthesis of value-added organic compounds, provided affordable catalysts with high activity, selectivity and durability are developed. Here, we synthesize Cu/C, Ni/C, and CuNi/C nanoparticles and compare their performance to Pt/C, Ru/C, PtRu/C for the ECH of hydroxyacetone, a bio-derived feedstock surrogate containing a carbonyl and a hydroxyl functional group. The non-precious metal electrocatalysts show promising conversion-time behavior, product selectivities, and Faradaic efficiencies. Ni/C forms propylene glycol with a selectivity of 89 % (at 80 % conversion), while Cu/C catalyzes ECH (52 % selectivity) and hydrodeoxygenation (HDO, 48 % selectivity, accounting for evaporation). CuNi/C shows increased turnover frequencies but reduced ECH selectivity (80 % at 80 % conversion) as compared to the Ni/C catalyst. Importantly, stability studies show that the non-precious metal catalysts do not leach at operating conditions.


Subject(s)
Metal Nanoparticles/chemistry , Oxygen/chemistry , Transition Elements/chemistry , Carbon/chemistry , Catalysis , Electrochemistry , Hydrogenation , Models, Molecular , Molecular Conformation
20.
ACS Appl Mater Interfaces ; 6(6): 4524-34, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24588840

ABSTRACT

Nondestructive methods that allow researchers to gather high-resolution quantitative information on a material's physical properties from inside a working device are increasingly in demand from the scientific community. Synchrotron-based microcomputed X-ray tomography, which enables the fast, full-field interrogation of materials in functional, real-world environments, was used to observe the physical changes of next-generation lithium-ion battery anode materials and architectures. High capacity, nongraphitic anodes were chosen for study because they represent the future direction of the field and one of their recognized limitations is their large volume expansion and contraction upon cycling, which is responsible for their generally poor electrochemical performance. In this work, Cu6Sn5 coated on a three-dimensional copper foam was used to model a high power electrode while laminated silicon particles were used to model a high energy electrode. The electrodes were illuminated in situ and ex situ, respectively, at Sector 2-BM of the Advanced Photon Source. The changes in electrode porosity and surface area were measured and show large differences based on the electrode architecture. This work is one of the first reports of full-field synchrotron tomography on high-capacity battery materials under operating conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...