Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 956, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075969

ABSTRACT

Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mechanisms. We report two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation. Helix 12 is displaced from the solvent-exposed active conformation and occupies the orthosteric ligand-binding pocket enabled by a conformational change that doubles the pocket volume. Paramagnetic relaxation enhancement (PRE) NMR and chemical crosslinking mass spectrometry confirm the repressive helix 12 conformation. PRE NMR also defines the mechanism of action of the corepressor-selective inverse agonist T0070907, and reveals that apo-helix 12 exchanges between transcriptionally active and repressive conformations-supporting a fundamental hypothesis in the NR field that helix 12 exchanges between transcriptionally active and repressive conformations.


Subject(s)
Benzamides/metabolism , Co-Repressor Proteins/metabolism , PPAR gamma/chemistry , PPAR gamma/metabolism , Pyridines/metabolism , Apoproteins/chemistry , Apoproteins/metabolism , Binding Sites , Co-Repressor Proteins/chemistry , Crystallography, X-Ray , HEK293 Cells , Humans , Ligands , Magnetic Resonance Spectroscopy , Mutation , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/metabolism , PPAR gamma/agonists , PPAR gamma/genetics , Protein Binding , Protein Conformation , Structure-Activity Relationship , Transcription, Genetic
2.
Proc Natl Acad Sci U S A ; 116(44): 22179-22188, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611383

ABSTRACT

Ligand-receptor interactions, which are ubiquitous in physiology, are described by theoretical models of receptor pharmacology. Structural evidence for graded efficacy receptor conformations predicted by receptor theory has been limited but is critical to fully validate theoretical models. We applied quantitative structure-function approaches to characterize the effects of structurally similar and structurally diverse agonists on the conformational ensemble of nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). For all ligands, agonist functional efficacy is correlated to a shift in the conformational ensemble equilibrium from a ground state toward an active state, which is detected by NMR spectroscopy but not observed in crystal structures. For the structurally similar ligands, ligand potency and affinity are also correlated to efficacy and conformation, indicating ligand residence times among related analogs may influence receptor conformation and function. Our results derived from quantitative graded activity-conformation correlations provide experimental evidence and a platform with which to extend and test theoretical models of receptor pharmacology to more accurately describe and predict ligand-dependent receptor activity.


Subject(s)
PPAR gamma/chemistry , Binding Sites , HEK293 Cells , Humans , PPAR gamma/agonists , PPAR gamma/metabolism , Protein Binding , Quantitative Structure-Activity Relationship , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology
3.
J Med Chem ; 62(4): 2008-2023, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30676741

ABSTRACT

Pioglitazone (Pio) is a Food and Drug Administration-approved drug for type-2 diabetes that binds and activates the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), yet it remains unclear how in vivo Pio metabolites affect PPARγ structure and function. Here, we present a structure-function comparison of Pio and its most abundant in vivo metabolite, 1-hydroxypioglitazone (PioOH). PioOH displayed a lower binding affinity and reduced potency in co-regulator recruitment assays. X-ray crystallography and molecular docking analysis of PioOH-bound PPARγ ligand-binding domain revealed an altered hydrogen bonding network, including the formation of water-mediated bonds, which could underlie its altered biochemical phenotype. NMR spectroscopy and hydrogen/deuterium exchange mass spectrometry analysis coupled to activity assays revealed that PioOH better stabilizes the PPARγ activation function-2 (AF-2) co-activator binding surface and better enhances co-activator binding, affording slightly better transcriptional efficacy. These results indicating that Pio hydroxylation affects its potency and efficacy as a PPARγ agonist contributes to our understanding of PPARγ-drug metabolite interactions.


Subject(s)
Hypoglycemic Agents/pharmacology , PPAR gamma/metabolism , Pioglitazone/pharmacology , Binding Sites , HEK293 Cells , Humans , Hydrogen Bonding , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/metabolism , Molecular Docking Simulation , Pioglitazone/chemistry , Pioglitazone/metabolism , Protein Binding , Protein Conformation/drug effects , Protein Domains/drug effects , Stereoisomerism
4.
Elife ; 72018 12 21.
Article in English | MEDLINE | ID: mdl-30575522

ABSTRACT

Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω)-loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω-loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.


Subject(s)
Molecular Dynamics Simulation , PPAR gamma/chemistry , PPAR gamma/metabolism , Protein Conformation , Binding Sites , Crystallography, X-Ray , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , Ligands , Molecular Structure , Oxazoles/chemistry , Oxazoles/metabolism , Oxazoles/pharmacology , PPAR gamma/agonists , Protein Binding , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/metabolism , Thiazolidinediones/pharmacology
5.
Nat Commun ; 9(1): 4687, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30409975

ABSTRACT

Small chemical modifications can have significant effects on ligand efficacy and receptor activity, but the underlying structural mechanisms can be difficult to predict from static crystal structures alone. Here we show how a simple phenyl-to-pyridyl substitution between two common covalent orthosteric ligands targeting peroxisome proliferator-activated receptor (PPAR) gamma converts a transcriptionally neutral antagonist (GW9662) into a repressive inverse agonist (T0070907) relative to basal cellular activity. X-ray crystallography, molecular dynamics simulations, and mutagenesis coupled to activity assays reveal a water-mediated hydrogen bond network linking the T0070907 pyridyl group to Arg288 that is essential for corepressor-selective inverse agonism. NMR spectroscopy reveals that PPARγ exchanges between two long-lived conformations when bound to T0070907 but not GW9662, including a conformation that prepopulates a corepressor-bound state, priming PPARγ for high affinity corepressor binding. Our findings demonstrate that ligand engagement of Arg288 may provide routes for developing corepressor-selective repressive PPARγ ligands.


Subject(s)
Co-Repressor Proteins/metabolism , PPAR gamma/agonists , PPAR gamma/chemistry , 3T3-L1 Cells , Anilides/chemistry , Anilides/pharmacology , Animals , Benzamides/chemistry , Benzamides/pharmacology , Drug Inverse Agonism , HEK293 Cells , Humans , Hydrogen Bonding , Ligands , Magnetic Resonance Spectroscopy , Mice , Mutagenesis , Protein Conformation , Pyridines/chemistry , Pyridines/pharmacology , Water/chemistry
6.
Structure ; 26(11): 1431-1439.e6, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30146169

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are pharmacological targets for the treatment of metabolic disorders. Previously, we demonstrated the anti-diabetic effects of SR1664, a PPARγ modulator lacking classical transcriptional agonism, despite its poor pharmacokinetic properties. Here, we report identification of the antagonist SR11023 as a potent insulin sensitizer with significant plasma exposure following oral administration. To determine the structural mechanism of ligand-dependent antagonism of PPARγ, we employed an integrated approach combining solution-phase biophysical techniques to monitor activation helix (helix 12) conformational dynamics. While informative on receptor dynamics, hydrogen/deuterium exchange mass spectrometry and nuclear magnetic resonance data provide limited information regarding the specific orientations of structural elements. In contrast, label-free quantitative crosslinking mass spectrometry revealed that binding of SR11023 to PPARγ enhances interaction with co-repressor motifs by pushing H12 away from the agonist active conformation toward the H2-H3 loop region (i.e., the omega loop), revealing the molecular mechanism for active antagonism of PPARγ.


Subject(s)
Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacology , PPAR gamma/antagonists & inhibitors , PPAR gamma/chemistry , 3T3-L1 Cells , Animals , Binding Sites , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Crystallography, X-Ray , Deuterium Exchange Measurement , Drug Design , HEK293 Cells , Humans , Ligands , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Models, Molecular , Protein Structure, Secondary , Structure-Activity Relationship
7.
J Am Chem Soc ; 139(41): 14638-14648, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28876066

ABSTRACT

The flavin chromophore in blue-light-using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppABLUF by the introduction of fluorotyrosine (F-Tyr) analogues that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark- to light-adapted form) photoreaction was observed, the change in Y21 pKa led to a 4000-fold increase in the rate of dark-state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppABLUF, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton-coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppABLUF, despite their sharing highly conserved FAD binding architectures.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Proteins/radiation effects , Flavoproteins/metabolism , Flavoproteins/radiation effects , Fluorine/metabolism , Light , Photoreceptors, Microbial/metabolism , Photoreceptors, Microbial/radiation effects , Tyrosine/metabolism , Binding Sites , Color , Electron Transport , Flavin-Adenine Dinucleotide/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Protein Domains , Protons , Synechocystis/chemistry
8.
Structure ; 25(10): 1506-1518.e4, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28890360

ABSTRACT

Nuclear receptor (NR) transcription factors bind various coreceptors, small-molecule ligands, DNA response element sequences, and transcriptional coregulator proteins to affect gene transcription. Small-molecule ligands and DNA are known to influence receptor structure, coregulator protein interaction, and function; however, little is known on the mechanism of synergy between ligand and DNA. Using quantitative biochemical, biophysical, and solution structural methods, including 13C-detected nuclear magnetic resonance and hydrogen/deuterium exchange (HDX) mass spectrometry, we show that ligand and DNA cooperatively recruit the intrinsically disordered steroid receptor coactivator-2 (SRC-2/TIF2/GRIP1/NCoA-2) receptor interaction domain to peroxisome proliferator-activated receptor gamma-retinoid X receptor alpha (PPARγ-RXRα) heterodimer and reveal the binding determinants of the complex. Our data reveal a thermodynamic mechanism by which DNA binding propagates a conformational change in PPARγ-RXRα, stabilizes the receptor ligand binding domain dimer interface, and impacts ligand potency and cooperativity in NR coactivator recruitment.


Subject(s)
DNA/metabolism , Multiprotein Complexes/chemistry , Nuclear Receptor Coactivator 2/chemistry , Nuclear Receptor Coactivator 2/metabolism , Binding Sites , Carbon-13 Magnetic Resonance Spectroscopy , Deuterium Exchange Measurement , Gene Expression Regulation , Humans , Ligands , PPAR gamma/chemistry , PPAR gamma/metabolism , Protein Binding , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/metabolism
9.
ACS Chem Biol ; 12(4): 969-978, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28165718

ABSTRACT

GW9662 and T0070907 are widely used commercially available irreversible antagonists of peroxisome proliferator-activated receptor gamma (PPARγ). These antagonists covalently modify Cys285 located in an orthosteric ligand-binding pocket embedded in the PPARγ ligand-binding domain and are used to block binding of other ligands. However, we recently identified an alternate/allosteric ligand-binding site in the PPARγ LBD to which ligand binding is not inhibited by these orthosteric covalent antagonists. Here, we developed a series of analogs based on the orthosteric covalent antagonist scaffold with the goal of inhibiting both orthosteric and allosteric cellular activation of PPARγ by MRL20, an orthosteric agonist that also binds to an allosteric site. Our efforts resulted in the identification of SR16832 (compound 22), which functions as a dual-site covalent inhibitor of PPARγ transcription by PPARγ-binding ligands. Molecular modeling, protein NMR spectroscopy structural analysis, and biochemical assays indicate the inhibition of allosteric activation occurs in part through expansion of the 2-chloro-5-nitrobenzamidyl orthosteric covalent antagonist toward the allosteric site, weakening of allosteric ligand binding affinity, and inducing conformational changes not competent for cellular PPARγ activation. Furthermore, SR16832 better inhibits binding of rosiglitazone, a thiazolidinedione (TZD) that weakly activates PPARγ when cotreated with orthosteric covalent antagonists, and may better inhibit binding of endogenous PPARγ ligands such as docosahexaenoic acid (DHA) compared to orthosteric covalent antagonists. Compounds such as SR16832 may be useful chemical tools to use as a dual-site bitopic orthosteric and allosteric covalent inhibitor of ligand binding to PPARγ.


Subject(s)
Anilides/pharmacology , Benzamides/pharmacology , PPAR gamma/antagonists & inhibitors , Pyridines/pharmacology , Allosteric Regulation , Binding Sites , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy
10.
J Med Chem ; 59(22): 10335-10341, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27783520

ABSTRACT

In a previous study, a cocrystal structure of PPARγ bound to 2-chloro-N-(3-chloro-4-((5-chlorobenzo[d]thiazol-2-yl)thio)phenyl)-4-(trifluoromethyl)benzenesulfonamide (1, T2384) revealed two orthosteric pocket binding modes attributed to a concentration-dependent biochemical activity profile. However, 1 also bound an alternate/allosteric site that could alternatively account for the profile. Here, we show ligand aggregation afflicts the activity profile of 1 in biochemical assays. However, ligand-observed fluorine (19F) and protein-observed NMR confirms 1 binds PPARγ with two orthosteric binding modes and to an allosteric site.


Subject(s)
Allosteric Site/drug effects , Benzothiazoles/pharmacology , PPAR gamma/agonists , Sulfonamides/pharmacology , Benzothiazoles/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry
11.
ACS Chem Biol ; 11(7): 1795-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27128111

ABSTRACT

Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Binding Sites , Magnetic Resonance Spectroscopy
12.
J Am Chem Soc ; 138(3): 926-935, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26708408

ABSTRACT

The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.


Subject(s)
Bacterial Proteins/chemistry , Flavoproteins/chemistry , Fluorine/chemistry , Photochemical Processes , Quantum Theory , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure
13.
Angew Chem Int Ed Engl ; 54(32): 9303-7, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26087935

ABSTRACT

Proton transfer is critical in many important biochemical reactions. The unique three-step excited-state proton transfer in avGFP allows observations of protein proton transport in real-time. In this work we exploit femtosecond to microsecond transient IR spectroscopy to record, in D2 O, the complete proton transfer photocycle of avGFP, and two mutants (T203V and S205V) which modify the structure of the proton wire. Striking differences and similarities are observed among the three mutants yielding novel information on proton transfer mechanism, rates, isotope effects, H-bond strength and proton wire stability. These data provide a detailed picture of the dynamics of long-range proton transfer in a protein against which calculations may be compared.


Subject(s)
Green Fluorescent Proteins/chemistry , Animals , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hydrogen Bonding , Hydrozoa/metabolism , Kinetics , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Protons , Spectrophotometry, Infrared
14.
Faraday Discuss ; 177: 293-311, 2015.
Article in English | MEDLINE | ID: mdl-25633480

ABSTRACT

The Blue Light Using Flavin (BLUF) domain proteins are an important family of photoreceptors controlling a range of responses in a wide variety of organisms. The details of the primary photochemical mechanism, by which light absorption in the isoalloxazine ring of the flavin is converted into a structure change to form the signalling state of the protein, is unresolved. In this work we apply ultrafast time resolved infra-red (TRIR) spectroscopy to investigate the primary photophysics of the BLUF domain of the protein AppA (AppABLUF) a light activated antirepressor. Here a number of mutations at Y21 and W104 in AppABLUF are investigated. The Y21 mutants are known to be photoinactive, while W104 mutants show the characteristic spectral red-shift associated with BLUF domain activity. Using TRIR we observed separately the decay of the excited state and the recovery of the ground state. In both cases the kinetics are found to be non-single exponential for all the proteins studied, suggesting a range of ground state structures. In the Y21 mutants an intermediate state was also observed, assigned to formation of the radical of the isoalloxazine (flavin) ring. The electron donor is the W104 residue. In contrast, no radical intermediates were detected in the studies of the photoactive dark adapted proteins, dAppABLUF and the dW104 mutants, suggesting a structure change in the Y21 mutants which favours W104 to isoalloxazine electron transfer. In contrast, in the light adapted form of the proteins (lAppABLUF, lW104) a radical intermediate was detected and the kinetics were greatly accelerated. In this case the electron donor was Y21 and major structural changes are associated with the enhanced quenching. In AppABLUF and the seven mutants studied radical intermediates are readily observed by TRIR spectroscopy, but there is no correlation with photoactivity. This suggests that if a charge separated state has a role in the BLUF photocycle it is only as a very short lived intermediate.


Subject(s)
Bacterial Proteins/chemistry , Electrons , Flavins/chemistry , Flavoproteins/chemistry , Free Radicals/chemistry , Photoreceptors, Microbial/chemistry , Bacterial Proteins/genetics , Electron Transport , Escherichia coli/genetics , Escherichia coli/metabolism , Flavoproteins/genetics , Gene Expression , Kinetics , Light , Models, Molecular , Mutation , Photoreceptors, Microbial/genetics , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spectroscopy, Fourier Transform Infrared/methods , Static Electricity , Structure-Activity Relationship , Time Factors
15.
J Phys Chem Lett ; 5(1): 220-224, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24723998

ABSTRACT

Acinetobacter baumannii is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational spectroscopy to compare the photoactivation mechanism of BlsA to the BLUF photosensor AppA from Rhodobacter sphaeroides. Although similar photocycles are observed, vibrational data together with homology modeling identify significant differences in the ß5 strand in BlsA caused by photoactivation, which are proposed to be directly linked to downstream signaling.

16.
J Am Chem Soc ; 136(12): 4605-15, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24579721

ABSTRACT

BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto-enol tautomerization induced by electronic excitation of the flavin ring are considered.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flavin-Adenine Dinucleotide/metabolism , Bacterial Proteins/genetics , Darkness , Electron Transport , Free Radicals/metabolism , Hydrogen Bonding , Models, Molecular , Mutation , Protein Structure, Tertiary
17.
J Am Chem Soc ; 135(43): 16168-74, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24083781

ABSTRACT

Living systems are fundamentally dependent on the ability of proteins to respond to external stimuli. The mechanism, the underlying structural dynamics, and the time scales for regulation of this response are central questions in biochemistry. Here we probe the structural dynamics of the BLUF domain found in several photoactive flavoproteins, which is responsible for light activated functions as diverse as phototaxis and gene regulation. Measurements have been made over 10 decades of time (from 100 fs to 1 ms) using transient vibrational spectroscopy. Chromophore (flavin ring) localized dynamics occur on the pico- to nanosecond time scale, while subsequent protein structural reorganization is observed over microseconds. Multiple time scales are observed for the dynamics associated with different vibrations of the protein, suggesting an underlying hierarchical relaxation pathway. Structural evolution in residues directly H-bonded to the chromophore takes place more slowly than changes in more remote residues. However, a point mutation which suppresses biological function is shown to 'short circuit' this structural relaxation pathway, suppressing the changes which occur further away from the chromophore while accelerating dynamics close to it.


Subject(s)
Flavoproteins/chemistry , Flavin-Adenine Dinucleotide/chemistry , Flavoproteins/genetics , Hydrogen Bonding , Kinetics , Models, Molecular , Photochemistry , Point Mutation , Protein Conformation , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Vibration
18.
J Phys Chem B ; 117(40): 11954-9, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24033093

ABSTRACT

Photochromic proteins, such as Dronpa, are of particular importance in bioimaging and form the basis of ultraresolution fluorescence microscopy. The photochromic reaction involves switching between a weakly emissive neutral trans form of the chromophore (A) and its emissive cis anion (B). Controlling the rates of switching has the potential to significantly enhance the spatial and temporal resolution in microscopy. However, the mechanism of the switching reaction has yet to be established. Here we report a high signal-to-noise ultrafast transient infrared investigation of the photochromic reaction in the mutant Dronpa2, which exhibits facile switching behavior. In these measurements we excite both the A and B forms and observe the evolution in the IR difference spectra over hundreds of picoseconds. Electronic excitation leads to bleaching of the ground electronic state and instantaneous (subpicosecond) changes in the vibrational spectrum of the protein. The chromophore and protein modes evolve with different kinetics. The chromophore ground state recovers in a fast nonsingle-exponential relaxation, while in a competing reaction the protein undergoes a structural change. This results in formation of a metastable form of the protein in its ground electronic state (A'), which subsequently evolves on the time scale of hundreds of picoseconds. The changes in the vibrational spectrum that occur on the subnanosecond time scale do not show unambiguous evidence for either proton transfer or isomerization, suggesting that these low-yield processes occur from the metastable state on a longer time scale and are thus not the primary photoreaction. Formation of A', and further relaxation of this state to the cis anion B, are relatively rare events, thus accounting for the overall low yield of the photochemical reaction.


Subject(s)
Luminescent Proteins/chemistry , Anions/chemistry , Electrons , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Isomerism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mutation , Signal-To-Noise Ratio , Spectrophotometry, Infrared , Vibration
19.
J Phys Chem B ; 116(35): 10722-9, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22871066

ABSTRACT

The blue light using flavin (BLUF) domain proteins, such as the transcriptional antirepressor AppA, are a novel class of photosensors that bind flavin noncovalently in order to sense and respond to high-intensity blue (450 nm) light. Importantly, the noncovalently bound flavin chromophore is unable to undergo large-scale structural change upon light absorption, and thus there is significant interest in understanding how the BLUF protein matrix senses and responds to flavin photoexcitation. Light absorption is proposed to result in alterations in the hydrogen-bonding network that surrounds the flavin chromophore on an ultrafast time scale, and the structural changes caused by photoexcitation are being probed by vibrational spectroscopy. Here we report ultrafast time-resolved infrared spectra of the AppA BLUF domain (AppA(BLUF)) reconstituted with isotopes of FAD, specifically [U-(13)C(17)]-FAD, [xylene-(13)C(8)]-FAD, [U-(15)N(4)]-FAD, and [4-(18)O(1)]-FAD both in solution and bound to AppA(BLUF). This allows for unambiguous assignment of ground- and excited-state modes arising directly from the flavin. Studies of model compounds and DFT calculations of the ground-state vibrational spectra reveal the sensitivity of these modes to their environment, indicating they can be used as probes of structural dynamics.


Subject(s)
Bacterial Proteins/chemistry , Flavoproteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flavoproteins/genetics , Flavoproteins/metabolism , Hydrogen Bonding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Spectrophotometry, Infrared , Vibration
20.
J Phys Chem B ; 116(20): 5810-8, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22515837

ABSTRACT

Neutral and anionic flavin radicals are involved in numerous photochemical processes and play an essential part in forming the signaling state of various photoactive flavoproteins such as cryptochromes and BLUF domain proteins. A stable neutral radical flavin has been prepared for study in aqueous solution, and both neutral and anion radical states have been stabilized in the proteins flavodoxin and glucose oxidase. Ultrafast transient absorption measurements were performed in the visible and mid-infrared region in order to characterize the excited state dynamics and the excited and ground state vibrational spectra and to probe the effect of the protein matrix on them. These data are compared with the results of density functional theory calculations. Excited state decay dynamics were found to be a strong function of the protein matrix. The ultrafast electron transfer quenching mechanism of the excited flavin moiety in glucose oxidase is characterized by vibrational spectroscopy. Such data will be critical in the ongoing analysis of the photocycle of photoactive flavoproteins.


Subject(s)
Flavins/chemistry , Free Radicals/chemistry , Anions/chemistry , Flavodoxin/chemistry , Flavodoxin/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Kinetics , Oxidation-Reduction , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...