Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Biodivers Data J ; 12: e118487, 2024.
Article in English | MEDLINE | ID: mdl-38566889

ABSTRACT

We report the results of investigations 2010 through 2023 of hymenopteran parasitoids associated with gall midges in Europe. A total of 242 collections of gall midges were made, from each of which one to several parasitoid species emerged, resulting in ca. 200 recorded parasitoid species and 267 host-parasitoid interaction records. The parasitoid families involved were Eulophidae (63 species), Platygastridae (56 species), Torymidae (34 species), Pteromalidae (31 species), Ceraphronidae (5 species), Eupelmidae (4 species), Eurytomidae (2 species) and Encyrtidae (1 species). As many as 159 interactions are reported for the first time, significantly enlarging our knowledge of gall midge - parasitoid interactions on the species level. Even more interesting, 51 host records are for parasitoid species for which no host was previously known. Similarly, 28 species of gall midge are reported as host to named parasitoids for the first time. Additionally, 91 parasitoid records were the first for the country in question. Differences between the rearing methods applied and their suitability for recording species with contrasting life histories, are discussed.

2.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743552

ABSTRACT

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Subject(s)
Embolism , Groundwater , Water/physiology , Wood/physiology , Xylem/physiology , Plants , Plant Leaves/physiology , Droughts
3.
Nat Commun ; 14(1): 3948, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402725

ABSTRACT

Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.


Subject(s)
Ecosystem , Plants , Climate Change , Plant Leaves , Phenotype
4.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018407

ABSTRACT

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Subject(s)
Magnoliopsida , Humans , Phylogeny , Climate Change , Biodiversity
5.
Ecol Evol ; 12(11): e9445, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36340817

ABSTRACT

Wetlands are important habitats, often threatened by drainage, eutrophication, and suppression of grazing. In many countries, considerable resources are spent combatting scrub encroachment. Here, we hypothesize that encroachment may benefit biodiversity-especially under eutrophic conditions where asymmetric competition among plants compromises conservation targets. We studied the effects of scrub cover, nutrient levels, and soil moisture on the richness of vascular plants, bryophytes, soil fungi, and microbes in open and overgrown wetlands. We also tested the effect of encroachment, eutrophication, and soil moisture on indicators of conservation value (red-listed species, indicator species, and uniqueness). Plant and bryophyte species richness peaked at low soil fertility, whereas soil fertility promoted soil microbes. Soil fungi responded negatively to increasing soil moisture. Lidar-derived variables reflecting the degree of scrub cover had predominantly positive effects on species richness measures. Conservation value indicators had a negative relationship to soil fertility and a positive to encroachment. For plant indicator species, the negative effect of high nutrient levels was offset by encroachment, supporting our hypothesis of competitive release under shade. The positive effect of soil moisture on indicator species was strong in open habitats only. Nutrient-poor mires and meadows host many rare species and require conservation management by grazing and natural hydrology. On former agricultural lands, where restoration of infertile conditions is unfeasible, we recommend rewilding with opportunities for encroachment toward semi-open willow scrub and swamp forest, with the prospect of high species richness in bryophytes, fungi, and soil microbes and competitive release in the herb layer.

6.
Sci Total Environ ; 850: 157853, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35940273

ABSTRACT

The prevalence of inflammatory diseases is increasing in populations throughout the industrialized world. An increasing proportion of human populations grow up and live in urban areas, probably with reduced exposure to biodiversity, including diverse soil biotas. Decreased exposure to microorganisms from natural environments, in particular in early childhood, has been hypothesized to hamper development of the human immune system and lead to increasing risks of inflammatory diseases, such as asthma. We investigated 40,249 Danish individuals born 1995-2015. Percentage greenspace was assessed in a 2 km buffer around home addresses of individuals. The Danish Biodiversity Map, charting occurrence density of red-listed animals, plants and macrofungi, was used as a proxy for multi-taxon biodiversity. For asthma defined broadly, we found no evidence of decreasing risk of developing asthma with higher levels of biodiversity, while greenspace exposure was associated with higher risk of asthma. In contrast, exposure to total and biodiverse greenspace was associated with reduced risk of developing severe asthma. Exposure to farmland, which in Denmark is heavily industrialized cropland, also showed association with elevated risk of developing asthma, even at relatively low agricultural landcover. In the subset of children growing up in highly urbanized settings, we found high exposures to urban greenspace to be associated with reduced risk of developing asthma. Our results lend limited support to the hypothesis that childhood exposure to biodiverse environments reduces the risk of acquiring inflammatory diseases later in life. However, access to urban greenspace, such as parks, which typically harbour low levels of biodiversity, seems to reduce asthma risk, potentially through exposure to common soil microbiota. Our results suggest that effects of biodiversity exposure on human health is set by a balance between ecosystem services and disservices and that biodiversity conservation is best motivated with other arguments than reduction of risks from inflammatory diseases.


Subject(s)
Asthma , Microbiota , Animals , Asthma/chemically induced , Asthma/epidemiology , Biodiversity , Child , Child, Preschool , Humans , Parks, Recreational , Soil
7.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35709320

ABSTRACT

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Subject(s)
Anthropogenic Effects , Biodiversity , Conservation of Natural Resources , Ecosystem , Trees , Conservation of Natural Resources/methods , Humans , Phylogeny , Trees/classification
8.
Ambio ; 51(4): 1022-1033, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34448122

ABSTRACT

The conversion of natural habitats into farmland has been a leading cause of species loss worldwide. Here, we investigated to what extent less intensive soil disturbance can mitigate this loss. Specifically, we examined whether reduced soil disturbance by tillage in agricultural fields could contribute to soil microbial biodiversity by providing a habitat for species that are limited by conventional tillage. To do so, we studied the diversity of soil biotas from three agricultural practices representing conventional tillage, reduced tillage and no tillage. Study fields were sampled by taking a bulk soil sample at the centre and edge of each field. The soil communities were recorded with environmental DNA metabarcoding using three molecular markers targeting bacteria, fungi and eukaryotes. While these three markers represent the vast majority of biotic variation in the soil, they will inevitably be dominated by the megadiverse microbiota of bacteria, microfungi and protists. We found a significant differentiation in community composition related to the intensity of tillage. Richness was weakly correlated to tillage, and more influenced by whether the sample was taken in the center or the edge of the field. Despite the significant effect of tillage on composition, comparisons with natural ecosystems revealed that all 30 study fields were much more similar in composition to other rotational fields than to more natural habitats, oldfields and leys. Despite a slightly higher similarity to oldfields and semi-natural grasslands, the contribution of no-till soil communities to biodiversity conservation is negligible, and our results indicate that restoration on set aside land may contribute more to conservation.


Subject(s)
Microbiota , Soil , Agriculture , Biodiversity , Soil Microbiology
9.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34050023

ABSTRACT

Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders-abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions-for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.


Subject(s)
Introduced Species , Phylogeography , Plants/classification , Ecosystem , Europe
10.
Ann Bot ; 125(6): 881-890, 2020 05 13.
Article in English | MEDLINE | ID: mdl-31858135

ABSTRACT

BACKGROUND AND AIMS: Classic theory on geographical gradients in plant-herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant-herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant-herbivore interactions, despite their expected influence on plant and herbivore traits. METHODS: Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20° latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation. KEY RESULTS: We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation. CONCLUSIONS: These results help unravel how plant-herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure.


Subject(s)
Quercus , Animals , Herbivory , Phenotype , Plant Leaves , Seeds
11.
BMC Ecol ; 19(1): 43, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31615504

ABSTRACT

BACKGROUND: In light of the biodiversity crisis and our limited ability to explain variation in biodiversity, tools to quantify spatial and temporal variation in biodiversity and its underlying drivers are critically needed. Inspired by the recently published ecospace framework, we developed and tested a sampling design for environmental and biotic mapping. We selected 130 study sites (40 × 40 m) across Denmark using stratified random sampling along the major environmental gradients underlying biotic variation. Using standardized methods, we collected site species data on vascular plants, bryophytes, macrofungi, lichens, gastropods and arthropods. To evaluate sampling efficiency, we calculated regional coverage (relative to the known species number per taxonomic group), and site scale coverage (i.e., sample completeness per taxonomic group at each site). To extend taxonomic coverage to organisms that are difficult to sample by classical inventories (e.g., nematodes and non-fruiting fungi), we collected soil for metabarcoding. Finally, to assess site conditions, we mapped abiotic conditions, biotic resources and habitat continuity. RESULTS: Despite the 130 study sites only covering a minute fraction (0.0005%) of the total Danish terrestrial area, we found 1774 species of macrofungi (54% of the Danish fungal species pool), 663 vascular plant species (42%), 254 bryophyte species (41%) and 200 lichen species (19%). For arthropods, we observed 330 spider species (58%), 123 carabid beetle species (37%) and 99 hoverfly species (33%). Overall, sample coverage was remarkably high across taxonomic groups and sufficient to capture substantial spatial variation in biodiversity across Denmark. This inventory is nationally unprecedented in detail and resulted in the discovery of 143 species with no previous record for Denmark. Comparison between plant OTUs detected in soil DNA and observed plant species confirmed the usefulness of carefully curated environmental DNA-data. Correlations among species richness for taxonomic groups were predominantly positive, but did not correlate well among all taxa suggesting differential and complex biotic responses to environmental variation. CONCLUSIONS: We successfully and adequately sampled a wide range of diverse taxa along key environmental gradients across Denmark using an approach that includes multi-taxon biodiversity assessment and ecospace mapping. Our approach is applicable to assessments of biodiversity in other regions and biomes where species are structured along environmental gradient.


Subject(s)
Biodiversity , Ecosystem , Denmark , Fungi , Surveys and Questionnaires
12.
Ecol Evol ; 9(17): 9768-9781, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31534692

ABSTRACT

ABSTRACT: Seed dispersal by mammals provides functional connectivity between isolated plant habitat patches. Across much of Europe, red deer (Cervus elaphus) populations are growing steadily, potentially leading to increasing importance of this large mammal species to plant dispersal. While deer endozoochory is relatively well studied, epizoochory via fur and hoof attachment is much less understood. Seed dispersal internally and externally on 57 red deer individuals was investigated by sampling the seed content of intestinal tracts, fur, and hooves of animals shot during annual hunts in four contrasted landscapes in Denmark. We assessed compositional differences between dispersal modes whether plant species' association to a dispersal mode could be predicted by seed traits, whole-plant traits, and species' local abundance. We found the largest difference in seed species composition to be between epizoochory (fur and hooves) and endozoochory (gut contents). Probability of plant dispersal through guts and fur was correctly predicted from traits more often than not. Hoof-epizoochory, however, could not be correctly predicted from plant traits. Most plant species encountered were picked up by all three dispersal modes, suggesting an overriding effect of plant abundance in the landscapes in which the deer roam, which was also indicated by the statistical analysis. Nonetheless, a significant proportion of species were associated with either gut, fur, or hoof-borne dispersal, reflecting the effect of plant traits and, potentially, animal behavior. Plant species being dispersed more often than expected through intestines were mainly associated with ruderal habitats, whereas species transported via fur tended toward association with wooded habitats. Considering the increasing red deer populations in Europe, and the differences between seed dispersal modes, all modes of animal seed dispersal should be taken into account in future studies. OPEN RESEARCH BADGES: This article has been awarded Open Data and Open Materials Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.6084/m9.figshare.7982483 and https://doi.org/10.6084/m9.figshare.7982483.

13.
Ecol Lett ; 22(10): 1650-1657, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31364805

ABSTRACT

While biodiversity loss continues globally, assessments of regional and local change over time have been equivocal. Here, we assess changes in plant species richness and beta diversity over 140 years at the level of regions within a country. Using 19th-century flora censuses for 14 Danish regions as a baseline, we overcome previous criticisms concerning short time series and neglect of completely altered habitats. We find that species composition has changed dramatically and directionally across all regions. Substantial species losses were more than offset by large gains, resulting in a net increase in species richness in all regions. The occupancy of initially widespread species increased, while initially rare species lost terrain. These changes were accompanied by strong biotic homogenization; i.e. regions are more similar now than they were 140 years ago. Species declining in Denmark were found to be in similar decline all over Northern Europe.


Subject(s)
Biodiversity , Ecosystem , Plants/classification , Denmark
14.
Data Brief ; 25: 104149, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31297428

ABSTRACT

Data on reproductive traits of alpine plants in the central Scandes Mountains (Sweden) are given, namely seed mass, seed number per plant and seed number per unit area of vegetation. Data were obtained 1) by counting reproductive units (whole plants, flower heads, capsules, berries, as applicable) per meter squared in seven distinct vegetation types, 2) by counting the number of seeds per reproductive unit in the lab, and 3) by weighing seeds (discriminating between dispersule and germinule wherever relevant).

15.
PLoS One ; 14(7): e0202844, 2019.
Article in English | MEDLINE | ID: mdl-31283764

ABSTRACT

Environmental DNA (eDNA) is increasingly applied in ecological studies, including studies with the primary purpose of criminal investigation, in which eDNA from soil can be used to pair samples or reveal sample provenance. We collected soil eDNA samples as part of a large national biodiversity research project across 130 sites in Denmark. We investigated the potential for soil eDNA metabarcoding in predicting provenance in terms of environmental conditions, habitat type and geographic regions. We used linear regression for predicting environmental gradients of light, soil moisture, pH and nutrient status (represented by Ellenberg Indicator Values, EIVs) and Quadratic Discriminant Analysis (QDA) to predict habitat type and geographic region. eDNA data performed relatively well as a predictor of environmental gradients (R2 > 0.81). Its ability to discriminate between habitat types was variable, with high accuracy for certain forest types and low accuracy for heathland, which was poorly predicted. Geographic region was also less accurately predicted by eDNA. We demonstrated the application of provenance prediction in forensic science by evaluating and discussing two mock crime scenes. Here, we listed the plant species from annotated sequences, which can further aid in identifying the likely habitat or, in case of rare species, a geographic region. Predictions of environmental gradients and habitat types together give an overall accurate description of a crime scene, but care should be taken when interpreting annotated sequences, e.g. due to erroneous assignments in GenBank. Our approach demonstrates that important habitat properties can be derived from soil eDNA, and exemplifies a range of potential applications of eDNA in forensic ecology.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Environmental Monitoring/methods , Soil/chemistry , Denmark , Ecology , Forests
16.
Front Plant Sci ; 9: 66, 2018.
Article in English | MEDLINE | ID: mdl-29456545

ABSTRACT

European freshwater habitats have experienced a severe loss of plant diversity, regionally and locally, over the last century or more. One important and well-established driver of change is eutrophication, which has increased with rising population density and agricultural intensification. However, reduced disturbance of lake margins may have played an additional key role. The geographical variation in water chemistry, which has set the scene for - and interacted with - anthropogenic impact, is much less well understood. We took advantage of some recently completed regional plant distribution surveys, relying on hundreds of skilled citizen scientists, and analyzed the hydrophyte richness to environment relations in five contiguous South-Scandinavian regions. For three of the regions, we also assessed changes to the freshwater flora over the latest 50-80 years. We found a considerable variation in background total phosphorus concentrations and alkalinity, both within and between regions. The prevalence of functional groups differed between regions in accordance with the environmental conditions and the species' tolerance to turbid waters. Similarly, the historical changes within regions followed the same trend in correspondence to the altered environmental conditions over time. Small submerged species decreased relative to tall submerged and floating-leaved species along the regional and historical eutrophication gradients. These changes were accompanied by systematically greater relative abundance of species of higher phosphorus prevalence. We conclude that species traits in close correspondence with anthropogenic impacts are the main determinants of local, regional and historical changes of species distribution and occupancy, while pure biogeography plays a minor role. Conservation measures, such as re-oligotrophication and re-established disturbance regimes through grazing and water level fluctuations, may help reduce the tall reed vegetation, restore the former richness of the freshwater flora and safeguard red-listed species, although extended time delays are anticipated in nutrient-rich regions, in which species only survive at minute abundance in isolated refugia.

17.
Glob Chang Biol ; 24(3): 869-871, 2018 03.
Article in English | MEDLINE | ID: mdl-29271546

ABSTRACT

Increasing species richness of light demanding species in forests may not be a conservation concern if we accept a macroecological and evolutionary baseline for biodiversity. Most of the current biodiversity in Europe has evolved in the Pleistocene or earlier, and in ecosystems markedly influenced by dynamic natural processes, including grazing. Many threatened species are associated with high-light forest environments such as forest glades and edges, as these have strongly declined at least partially due to the decline of large herbivores in European forests. Hence, moderate grazing in forests should be an ecological baseline and conservation target rather than a concern.


Subject(s)
Biodiversity , Forests , Animals , Conservation of Natural Resources , Ecosystem , Endangered Species , Europe
18.
Nat Commun ; 8(1): 1188, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084957

ABSTRACT

DNA metabarcoding is promising for cost-effective biodiversity monitoring, but reliable diversity estimates are difficult to achieve and validate. Here we present and validate a method, called LULU, for removing erroneous molecular operational taxonomic units (OTUs) from community data derived by high-throughput sequencing of amplified marker genes. LULU identifies errors by combining sequence similarity and co-occurrence patterns. To validate the LULU method, we use a unique data set of high quality survey data of vascular plants paired with plant ITS2 metabarcoding data of DNA extracted from soil from 130 sites in Denmark spanning major environmental gradients. OTU tables are produced with several different OTU definition algorithms and subsequently curated with LULU, and validated against field survey data. LULU curation consistently improves α-diversity estimates and other biodiversity metrics, and does not require a sequence reference database; thus, it represents a promising method for reliable biodiversity estimation.


Subject(s)
Algorithms , Biodiversity , DNA Barcoding, Taxonomic/methods , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Cluster Analysis , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Plants/genetics , Reproducibility of Results
20.
Environ Pollut ; 231(Pt 1): 1201-1207, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28420490

ABSTRACT

Mosses collected decades ago and stored in herbaria are often used to assess historical nitrogen deposition. This method is effectively based on the assumption that tissue N concentration remains constant during storage. The present study raises serious doubt about the generality of that assumption. We measured tissue N and C concentrations as well as δ15N, δ13C, Pb and Mg in herbarium and present day samples of seven bryophyte species from six sites across Denmark. While an increase in nitrogen deposition during the last century is well-documented for the study site, we surprisingly found foliar N concentration to be higher in historical samples than in modern samples. Based on δ15N values and Pb concentration, we find nitrogen contamination of herbarium specimens during storage to be the most likely cause, possibly in combination with dilution though growth and/or decomposition during storage. We suggest ways to assess contamination and recommend caution to be taken when using herbarium specimens to assess historical pollution if exposure during storage cannot be ruled out.


Subject(s)
Bryophyta/chemistry , Environmental Monitoring/methods , Environmental Pollution/analysis , Nitrogen/analysis , Carbon Isotopes/analysis , Denmark , Lead/analysis , Magnesium/analysis , Nitrogen Isotopes/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...