Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 8(11): 2115-2129, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814072

ABSTRACT

Antiviral signalling, which can be activated in host cells upon virus infection, restricts virus replication and communicates infection status to neighbouring cells. The antiviral response is heterogeneous, both quantitatively (efficiency of response activation) and qualitatively (transcribed antiviral gene set). To investigate the basis of this heterogeneity, we combined Virus Infection Real-time IMaging (VIRIM), a live-cell single-molecule imaging method, with real-time readouts of the dsRNA sensing pathway to analyse the response of human cells to encephalomyocarditis virus (EMCV) infection. We find that cell-to-cell heterogeneity in viral replication rates early in infection affect the efficiency of antiviral response activation, with lower replication rates leading to more antiviral response activation. Furthermore, we show that qualitatively distinct antiviral responses can be linked to the strength of the antiviral signalling pathway. Our analyses identify variation in early viral replication rates as an important parameter contributing to heterogeneity in antiviral response activation.


Subject(s)
Virus Diseases , Virus Replication , Humans , Signal Transduction , Encephalomyocarditis virus/physiology , Antiviral Agents
2.
Free Radic Biol Med ; 206: 134-142, 2023 09.
Article in English | MEDLINE | ID: mdl-37392950

ABSTRACT

Reactive Oxygen Species (ROS) in the form of H2O2 can act both as physiological signaling molecules as well as damaging agents, depending on their concentration and localization. The downstream biological effects of H2O2 were often studied making use of exogenously added H2O2, generally as a bolus and at supraphysiological levels. But this does not mimic the continuous, low levels of intracellular H2O2 production by for instance mitochondrial respiration. The enzyme d-Amino Acid Oxidase (DAAO) catalyzes H2O2 formation using d-amino acids, which are absent from culture media, as a substrate. Ectopic expression of DAAO has recently been used in several studies to produce inducible and titratable intracellular H2O2. However, a method to directly quantify the amount of H2O2 produced by DAAO has been lacking, making it difficult to assess whether observed phenotypes are the result of physiological or artificially high levels of H2O2. Here we describe a simple assay to directly quantify DAAO activity by measuring the oxygen consumed during H2O2 production. The oxygen consumption rate (OCR) of DAAO can directly be compared to the basal mitochondrial respiration in the same assay, to estimate whether the ensuing level of H2O2 production is within the range of physiological mitochondrial ROS production. In the tested monoclonal RPE1-hTERT cells, addition of 5 mM d-Ala to the culture media amounts to a DAAO-dependent OCR that surpasses ∼5% of the OCR that stems from basal mitochondrial respiration and hence produces supra-physiological levels of H2O2. We show that the assay can also be used to select clones that express differentially localized DAAO with the same absolute level of H2O2 production to be able to discriminate the effects of H2O2 production at different subcellular locations from differences in total oxidative burden. This method therefore greatly improves the interpretation and applicability of DAAO-based models, thereby moving the redox biology field forward.


Subject(s)
Amino Acids , Hydrogen Peroxide , Humans , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Amino Acids/metabolism , Oxygen Consumption , Oxygen
3.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33188777

ABSTRACT

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Subject(s)
Protein Biosynthesis , RNA Viruses/physiology , Virus Replication/physiology , Cell Line, Tumor , Cell Survival , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferons/metabolism , RNA Transport , RNA, Viral/genetics , Reproducibility of Results , Single Molecule Imaging , Time Factors
4.
PLoS One ; 13(11): e0207159, 2018.
Article in English | MEDLINE | ID: mdl-30408122

ABSTRACT

Apico-basal polarity establishment is a seminal process in tissue morphogenesis. To function properly it is often imperative that epithelial cells limit apical membrane formation to a single domain. We previously demonstrated that signaling by the small GTPase Cdc42, together with its guanine nucleotide exchange factor (GEF) Tuba, is required to prevent the formation of multiple apical domains in polarized Ls174T:W4 cells, a single cell model for enterocyte polarization. To further chart the molecular signaling mechanisms that safeguard singularity during enterocyte polarization we generated knockout cells for the Cdc42 effector protein Par6A. Par6A loss results in the formation of multiple apical domains, similar to loss of Cdc42. In Par6A knockout cells, we find that active Cdc42 is more mobile at the apical membrane compared to control cells and that wild type Cdc42 is more diffusely localized throughout the cell, indicating that Par6A is required to restrict Cdc42 signaling. Par6A, Cdc42 and its GEF Tuba bind in a co-immunoprecipitation experiment and they partially colocalize at the apical membrane in polarized Ls174T:W4 cells, suggesting the formation of a trimeric complex. Indeed, in a rescue experiment using Par6A mutants, we show that the ability to establish this trimeric complex correlates with the ability to restore singularity in Par6A knockout cells. Together, these experiments therefore indicate that a Tuba/Cdc42/Par6A complex is required to ensure the formation of a single apical domain during enterocyte polarization.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Polarity/physiology , Cytoskeletal Proteins/metabolism , Enterocytes/cytology , Enterocytes/metabolism , Guanine Nucleotide Exchange Factors/metabolism , cdc42 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Cell Line , Cell Polarity/genetics , Cytoskeletal Proteins/chemistry , Gene Knockout Techniques , Guanine Nucleotide Exchange Factors/chemistry , Humans , Microvilli/metabolism , Microvilli/ultrastructure , Protein Structure, Quaternary , Signal Transduction , cdc42 GTP-Binding Protein/chemistry
5.
Mol Cell Biol ; 38(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29581186

ABSTRACT

PTEN is a tumor suppressor that is frequently lost in epithelial malignancies. A part of the tumor-suppressive properties of PTEN is attributed to its function in cell polarization and consequently its role in maintaining epithelial tissue integrity. However, surprisingly little is known about the function and regulation of PTEN during epithelial cell polarization. We used clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated gene disruption to delete PTEN in intestinal epithelial Ls174T:W4 cells, which upon differentiation form a microvillus-covered apical membrane (brush border) on a part of the cell cortex, independent of cell-cell junctions. We show that loss of PTEN results in the formation of a larger brush border that, in a fraction of the cells, even spans the entire plasma membrane, revealing that PTEN functions in the regulation of apical membrane size. Depletion of the phosphatase PTPL1 resulted in a similar defect. PTPL1 interacts with PTEN, and this interaction is necessary for apical membrane enrichment of PTEN. Importantly, phosphatase activity of PTPL1 is not required, indicating that PTPL1 functions as an anchor protein in this process. Our work thus demonstrates a novel function for PTEN during cell polarization in controlling apical membrane size and identifies PTPL1 as a critical apical membrane anchor for PTEN in this process.


Subject(s)
Cell Membrane/metabolism , Cell Polarity/physiology , Microvilli/metabolism , PTEN Phosphohydrolase/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , Animals , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Epithelial Cells/physiology , Gene Knockout Techniques , HEK293 Cells , Humans , Male , Mice , Microvilli/genetics , Neoplasms/pathology , PTEN Phosphohydrolase/genetics
6.
Mol Cell Biol ; 37(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28069739

ABSTRACT

Signaling by the small GTPase Cdc42 governs a diverse set of cellular processes that contribute to tissue morphogenesis. Since these processes often require highly localized signaling, Cdc42 activity must be clustered in order to prevent ectopic signaling. During cell polarization, apical Cdc42 signaling directs the positioning of the nascent apical membrane. However, the molecular mechanisms that drive Cdc42 clustering during polarity establishment are largely unknown. Here, we demonstrate that during cell polarization localized Cdc42 signaling is enabled via activity-dependent control of Cdc42 mobility. By performing photoconversion experiments, we show that inactive Cdc42-GDP is 30-fold more mobile than active Cdc42-GTP. This switch in apical mobility originates from a dual mechanism involving RhoGDI-mediated membrane dissociation of Cdc42-GDP and Tuba-mediated immobilization of Cdc42-GTP. Interference with either mechanism affects Cdc42 clustering and as a consequence impairs Cdc42-mediated apical membrane clustering. We therefore identify a molecular network, comprised of Cdc42, the guanine nucleotide exchange factor (GEF) Tuba, and RhoGDI, that enables differential diffusion of inactive and active Cdc42 and is required to establish localized Cdc42 signaling during enterocyte polarization.


Subject(s)
Cell Polarity , Enterocytes/cytology , Enterocytes/metabolism , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , Cell Line , Cell Membrane/metabolism , HEK293 Cells , Humans , Microvilli/metabolism , Protein Binding , Tubulin/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors
7.
J Cell Biol ; 210(7): 1055-63, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26416959

ABSTRACT

During yeast cell polarization localization of the small GTPase, cell division control protein 42 homologue (Cdc42) is clustered to ensure the formation of a single bud. Here we show that the disease-associated flippase ATPase class I type 8b member 1 (ATP8B1) enables Cdc42 clustering during enterocyte polarization. Loss of this regulation results in increased apical membrane size with scattered apical recycling endosomes and permits the formation of more than one apical domain, resembling the singularity defect observed in yeast. Mechanistically, we show that to become apically clustered, Cdc42 requires the interaction between its polybasic region and negatively charged membrane lipids provided by ATP8B1. Disturbing this interaction, either by ATP8B1 depletion or by introduction of a Cdc42 mutant defective in lipid binding, increases Cdc42 mobility and results in apical membrane enlargement. Re-establishing Cdc42 clustering, by tethering it to the apical membrane or lowering its diffusion, restores normal apical membrane size in ATP8B1-depleted cells. We therefore conclude that singularity regulation by Cdc42 is conserved between yeast and human and that this regulation is required to maintain healthy tissue architecture.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Polarity/physiology , Enterocytes/metabolism , Membrane Lipids/metabolism , Phospholipid Transfer Proteins/metabolism , Signal Transduction/physiology , cdc42 GTP-Binding Protein/metabolism , Adenosine Triphosphatases/genetics , Animals , Cell Line , Enterocytes/cytology , Humans , Membrane Lipids/genetics , Mice , Phospholipid Transfer Proteins/genetics , cdc42 GTP-Binding Protein/genetics
8.
PLoS One ; 9(9): e106687, 2014.
Article in English | MEDLINE | ID: mdl-25203140

ABSTRACT

Brush border formation during polarity establishment of intestinal epithelial cells is uniquely governed by the Rap2A GTPase, despite expression of the other highly similar Rap2 isoforms (Rap2B and Rap2C). We investigated the mechanisms of this remarkable specificity and found that Rap2C is spatially segregated from Rap2A signaling as it is not enriched at the apical membrane after polarization. In contrast, both Rap2A and Rap2B are similarly located at Rab11 positive apical recycling endosomes and inside the brush border. However, although Rap2B localizes similarly it is not equally activated as Rap2A during brush border formation. We reveal that the C-terminal hypervariable region allows selective activation of Rap2A, yet this selectivity does not originate from the known differential lipid modifications of this region. In conclusion, we demonstrate that Rap2 specificity during brush border formation is determined by two distinct mechanisms involving segregated localization and selective activation.


Subject(s)
Enterocytes/ultrastructure , Microvilli/metabolism , Signal Transduction , rap GTP-Binding Proteins/metabolism , Cell Line , Enterocytes/cytology , Humans , Protein Isoforms/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...