Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Entropy (Basel) ; 25(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37761661

ABSTRACT

This exploratory study investigates a human agent's evolving judgements of reliability when interacting with an AI system. Two aims drove this investigation: (1) compare the predictive performance of quantum vs. Markov random walk models regarding human reliability judgements of an AI system and (2) identify a neural correlate of the perturbation of a human agent's judgement of the AI's reliability. As AI becomes more prevalent, it is important to understand how humans trust these technologies and how trust evolves when interacting with them. A mixed-methods experiment was developed for exploring reliability calibration in human-AI interactions. The behavioural data collected were used as a baseline to assess the predictive performance of the quantum and Markov models. We found the quantum model to better predict the evolving reliability ratings than the Markov model. This may be due to the quantum model being more amenable to represent the sometimes pronounced within-subject variability of reliability ratings. Additionally, a clear event-related potential response was found in the electroencephalographic (EEG) data, which is attributed to the expectations of reliability being perturbed. The identification of a trust-related EEG-based measure opens the door to explore how it could be used to adapt the parameters of the quantum model in real time.

2.
Front Psychol ; 13: 871028, 2022.
Article in English | MEDLINE | ID: mdl-35668978

ABSTRACT

This article extends the combinatorial approach to support the determination of contextuality amidst causal influences. Contextuality is an active field of study in Quantum Cognition, in systems relating to mental phenomena, such as concepts in human memory. In the cognitive field of study, a contemporary challenge facing the determination of whether a phenomenon is contextual has been the identification and management of disturbances. Whether or not said disturbances are identified through the modeling approach, constitute causal influences, or are disregardableas as noise is important, as contextuality cannot be adequately determined in the presence of causal influences. To address this challenge, we first provide a formalization of necessary elements of the combinatorial approach within the language of canonical causal models. Through this formalization, we extend the combinatorial approach to support a measurement and treatment of disturbance, and offer techniques to separately distinguish noise and causal influences. Thereafter, we develop a protocol through which these elements may be represented within a cognitive experiment. As human cognition seems rife with causal influences, cognitive modelers may apply the extended combinatorial approach to practically determine the contextuality of cognitive phenomena.

3.
Entropy (Basel) ; 22(2)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-33285945

ABSTRACT

Empirical findings from cognitive psychology indicate that, in scenarios under high levels of uncertainty, many people tend to make irrational decisions. To address this problem, models based on quantum probability theory, such as the quantum-like Bayesian networks, have been proposed. However, this model makes use of a Bayes normalisation factor during probabilistic inference to convert the likelihoods that result from quantum interference effects into probability values. The interpretation of this operation is not clear and leads to extremely skewed intensity waves that make the task of prediction of these irrational decisions challenging. This article proposes the law of balance, a novel mathematical formalism for probabilistic inferences in quantum-like Bayesian networks, based on the notion of balanced intensity waves. The general idea is to balance the intensity waves resulting from quantum interference in such a way that, during Bayes normalisation, they cancel each other. With this representation, we also propose the law of maximum uncertainty, which is a method to predict these paradoxes by selecting the amplitudes of the wave with the highest entropy. Empirical results show that the law of balance together with the law of maximum uncertainty were able to accurately predict different experiments from cognitive psychology showing paradoxical or irrational decisions, namely in the Prisoner's Dilemma game and the Two-Stage Gambling Game.

4.
Entropy (Basel) ; 22(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-33285949

ABSTRACT

This article presents a general framework that allows irrational decision making to be theoretically investigated and simulated. Rationality in human decision making under uncertainty is normatively prescribed by the axioms of probability theory in order to maximize utility. However, substantial literature from psychology and cognitive science shows that human decisions regularly deviate from these axioms. Bistable probabilities are proposed as a principled and straight forward means for modeling (ir)rational decision making, which occurs when a decision maker is in "two minds". We show that bistable probabilities can be formalized by positive-operator-valued projections in quantum mechanics. We found that (1) irrational decision making necessarily involves a wider spectrum of causal relationships than rational decision making, (2) the accessible information turns out to be greater in irrational decision making when compared to rational decision making, and (3) irrational decision making is quantum-like because it violates the Bell-Wigner polytope.

5.
Neural Netw ; 132: 190-210, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32911304

ABSTRACT

This article proposes a novel and comprehensive framework on how to describe the probabilistic nature of decision-making process. We suggest extending the quantum-like Bayesian network formalism to incorporate the notion of maximum expected utility to model human paradoxical, sub-optimal and irrational decisions. What distinguishes this work is that we take advantage of the quantum interference effects produced in quantum-like Bayesian Networks during the inference process to influence the probabilities used to compute the maximum expected utility of some decision. The proposed quantum-like decision model is able to (1) predict the probability distributions found in different experiments reported in the literature by modelling uncertainty through quantum interference, (2) to identify decisions that the decision-makers perceive to be optimal within their belief space, but that are actually irrational with respect to expected utility theory, (3) gain an understanding of how the decision-maker's beliefs evolve within a decision-making scenario. The proposed model has the potential to provide new insights in decision science, as well as having direct implications for decision support systems that deal with human data, such as in the fields of economics, finance, psychology, etc.


Subject(s)
Decision Making , Probability , Quantum Theory , Uncertainty , Bayes Theorem , Humans , Problem Solving
6.
Proc Math Phys Eng Sci ; 476(2237): 20190839, 2020 May.
Article in English | MEDLINE | ID: mdl-32523413

ABSTRACT

This article presents a unified probabilistic framework that allows both rational and irrational decision-making to be theoretically investigated and simulated in classical and quantum games. Rational choice theory is a basic component of game-theoretic models, which assumes that a decision-maker chooses the best action according to their preferences. In this article, we define irrationality as a deviation from a rational choice. Bistable probabilities are proposed as a principled and straightforward means for modelling (ir)rational decision-making in games. Bistable variants of classical and quantum Prisoner's Dilemma, Stag Hunt and Chicken are analysed in order to assess the effect of (ir)rationality on agent utility and Nash equilibria. It was found that up to three Nash equilibria exist for all three classical bistable games and maximal utility was attained when agents were rational. Up to three Nash equilibria exist for all three quantum bistable games; however, utility was shown to increase according to higher levels of agent irrationality.

7.
Behav Brain Sci ; 43: e17, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32159505

ABSTRACT

We propose an alternative and unifying framework for decision-making that, by using quantum mechanics, provides more generalised cognitive and decision models with the ability to represent more information compared to classical models. This framework can accommodate and predict several cognitive biases reported in Lieder & Griffiths without heavy reliance on heuristics or on assumptions of the computational resources of the mind.


Subject(s)
Cognition , Decision Making , Bias , Heuristics , Humans
8.
PLoS One ; 14(1): e0208555, 2019.
Article in English | MEDLINE | ID: mdl-30608937

ABSTRACT

This article explores how probabilistic programming can be used to simulate quantum correlations in an EPR experimental setting. Probabilistic programs are based on standard probability which cannot produce quantum correlations. In order to address this limitation, a hypergraph formalism was programmed which both expresses the measurement contexts of the EPR experimental design as well as associated constraints. Four contemporary open source probabilistic programming frameworks were used to simulate an EPR experiment in order to shed light on their relative effectiveness from both qualitative and quantitative dimensions. We found that all four probabilistic languages successfully simulated quantum correlations. Detailed analysis revealed that no language was clearly superior across all dimensions, however, the comparison does highlight aspects that can be considered when using probabilistic programs to simulate experiments in quantum physics.


Subject(s)
Computer Simulation , Probability , Programming Languages , Quantum Theory , Time Factors
9.
Trends Cogn Sci ; 19(7): 383-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26058709

ABSTRACT

What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach.


Subject(s)
Cognition/physiology , Models, Psychological , Quantum Theory , Humans , Probability
10.
Front Psychol ; 5: 612, 2014.
Article in English | MEDLINE | ID: mdl-25071622

ABSTRACT

This article presents a study of how humans perceive and judge the relevance of documents. Humans are adept at making reasonably robust and quick decisions about what information is relevant to them, despite the ever increasing complexity and volume of their surrounding information environment. The literature on document relevance has identified various dimensions of relevance (e.g., topicality, novelty, etc.), however little is understood about how these dimensions may interact. We performed a crowdsourced study of how human subjects judge two relevance dimensions in relation to document snippets retrieved from an internet search engine. The order of the judgment was controlled. For those judgments exhibiting an order effect, a q-test was performed to determine whether the order effects can be explained by a quantum decision model based on incompatible decision perspectives. Some evidence of incompatibility was found which suggests incompatible decision perspectives is appropriate for explaining interacting dimensions of relevance in such instances.

11.
Top Cogn Sci ; 5(4): 711-36, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24039093

ABSTRACT

The term "vagueness" describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno's sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib's and Pelletier's () theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substantial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon.


Subject(s)
Fuzzy Logic , Models, Statistical , Probability Theory , Probability , Psychological Theory , Quantum Theory , Humans , Judgment , Models, Neurological , Semantics
12.
Mem Cognit ; 41(6): 797-819, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23645391

ABSTRACT

Free-association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long-lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist-cuing, primed free-association, intralist-cuing, and single-item recognition tasks. The findings also show that when a related word is presented in order to cue the recall of a studied word, the cue activates the target in an array of related words that distract and reduce the probability of the target's selection. The activation of the semantic network produces priming benefits during encoding, and search costs during retrieval. In extralist cuing, recall is a negative function of cue-to-distractor strength, and a positive function of neighborhood density, cue-to-target strength, and target-to-cue strength. We show how these four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks, indicating that the contribution of the semantic network varies with the context provided by the task. Finally, we evaluate spreading-activation and quantum-like entanglement explanations for the priming effects produced by neighborhood density.


Subject(s)
Memory, Episodic , Neural Networks, Computer , Semantics , Association , Cues , Humans , Memory, Short-Term/physiology , Mental Recall/physiology , Recognition, Psychology/physiology , Repetition Priming/physiology
13.
Australas Med J ; 5(9): 482-8, 2012.
Article in English | MEDLINE | ID: mdl-23115582

ABSTRACT

BACKGROUND: This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. AIM: The concept-based approach is intended to overcome specific challenges we identified in searching medical records. METHOD: Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. RESULTS: Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. CONCLUSION: The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.

14.
J Math Psychol ; 53(5): 363-377, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20224806

ABSTRACT

Following an early claim by Nelson & McEvoy (35) suggesting that word associations can display 'spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. In this paper quantum theory is proposed as a framework suitable for modelling the human mental lexicon, specifically the results obtained from both intralist and extralist word association experiments. Some initial models exploring this hypothesis are discussed, and experiments capable of testing these models proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...