Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37047980

ABSTRACT

Nowadays, the contamination caused by emerging pollutants is a global concern due to the lack of scientific evidence to demonstrate the risk or toxicity to humans due to the presence of pharmaceutical residues in the environment. This study aimed to identify and describe the disposal practices of unused and unwanted medications, as well as to analyze and identify the most frequent drugs determined on water bodies adjacent to the biggest urban population in Mexico. A two-phase study with an epidemiological and an ecological assessment was performed. The epidemiological phase was carried out with a descriptive cross-sectional study among citizens from Mexico City and the metropolitan area using an electronic survey applied to 719 subjects aimed to assess practices in which pharmaceutical products are disposed. The ecological phase included a review of scientific reports. The results show that nearly 83.5% of those surveyed use inappropriate practices for disposal medicines, the main ones are through the municipal dump or directly in the drain. The ecological approach was carried out by a systematic literature review of original reports published between 2013 to 2023; information about the class of drugs, active substance, environmental compartments, location, and concentration was extracted and presented. Fifty-one different types of pharmaceutical residues were detected in wastewater in Mexico City in the last decade. The results of this study can contribute to the application of public policies for waste management authorities to mitigate the socio-environmental risks due to the inappropriate disposal of medicines.


Subject(s)
Medical Waste , Refuse Disposal , Waste Management , Humans , Cross-Sectional Studies , Surveys and Questionnaires , Disease Susceptibility , Pharmaceutical Preparations
2.
Article in English | MEDLINE | ID: mdl-26048553

ABSTRACT

We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.


Subject(s)
Aluminum Compounds/chemistry , Biosensing Techniques , Electronics , Gallium/chemistry , Semiconductors , Humans
3.
Nanoscale ; 7(6): 2360-5, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25564044

ABSTRACT

As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the 'activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization.


Subject(s)
Cell Adhesion/drug effects , Gallium/chemistry , Metal Nanoparticles/chemistry , Adsorption , Biocompatible Materials/chemistry , Blood Proteins/chemistry , Fibrinogen/chemistry , Humans , Immunoglobulin G/chemistry , Microscopy, Atomic Force , Molecular Conformation , Nanotechnology/methods , Protein Binding , Reproducibility of Results , Serum Albumin/chemistry , Surface Properties
5.
Appl Phys Lett ; 103(1): 13701, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23918992

ABSTRACT

A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...